4. Периметр треугольника ABC равен 32 см. Сторона ВС больше стороны AC на 3 см и больше стороны АВ в 3 ра- за. Найдите длины сторон треугольника ABC.Решите через отрезки
Октаэдр в задаче можно представить себе следующим образом. Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра. К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0) то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно. Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c. Вот тут самая важная часть решения. "С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба. Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней. В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра). То есть получается такая задача для нахождения b (при заданном c) "В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2". Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1); Отсюда b = 2√3; b^2 = 12;
Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра.
К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0)
то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно.
Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c.
Вот тут самая важная часть решения.
"С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба.
Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней.
В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра).
То есть получается такая задача для нахождения b (при заданном c)
"В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2".
Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1);
Отсюда b = 2√3; b^2 = 12;
1. 75°, 105°, 75°, 105°.
2. Точка В лежит между А и С.
3. ∠АОС=24°; ∠СОВ=36°.
4. АВ=18 см; ВС=24 см; АС=30 см.
5. 1) 90°; 2) 34°; 3) 27 см.
Объяснение:
1. При пересечении двух прямых образуются две пары углов:
а) равные вертикальные;
б) Смежные, сумма которых равна 180°.
Сумма двух углов равна 150°. Значит каждый угол равен 150 °/2=75°.
Два других равны 180°-75°=105°.
***
2. АВ+ВС=АС; 4,1+3,5=7,6. Значит точка В лежит между А и С.
***
3. Пусть ∠АОС=2х. Тогда ∠СОВ=3х. Сумма этих углов равна 60°.
2х+3х=60°;
5х=60°;
х=12°;
∠АОС=2х=2*12=24°;
∠СОВ=3х=3*12=36°.
***
4. АВС - треугольник. Пусть катеты равны 3х см и 4х см. Тогда гипотенуза равна 5х см.
Р=АВ+ВС+АС;
3х+4х+5х=72 см.
12х=72;
х=6;
АВ=3х=3*6=18 см;
ВС=4х=4*6=24 см.
АС=5х=5*6=30 см.
***
5. 1) Раз BD - высота, то BD ⊥ AC и угол ADB=90°.
***
2) ∠A=∠BAK+∠KAC; ∠ВАК=17°.
AK- биссектриса ∠А. Значит ∠А=2*17=34°.
***
3) P ABC =AB+BC+AC;
AB=2*AM=2*4=8 см. (СМ-медиана делит сторону АВ на две равные части).
P ABC=8+9+10=27 см.