4. Периметр правильного треугольника, описанного около окружности, равен 36 см. Найдите периметри площадь правильного шестиугольника, описанного около этой же окружности.
Пусть в трапецию ABCD, AD=16, BC=4 вписана окружность. Радиус окружности, вписанной в трапецию, равен половине высоты трапеции. Если в трапецию можно вписать окружность, значит, суммы её противоположных сторон равны, то есть, сумма 2 боковых сторон равна сумме оснований - 16+4=20, а так как боковые стороны равны, то каждая из них равна 20/2=10. Проведём высоты BE и CF. Четырехугольник BCFE является прямоугольником, так как все его углы прямые. Тогда EF=BC=4. Треугольники ABE и CDF равны по катету и гипотенузе (AB=CD; BE=CF). Тогда AE=DF=(AD-EF)/2=(16-4)/2=6. В прямоугольном треугольнике ABE гипотенуза AB равна 10, а катет AE равен 6. Тогда катет BE по теореме Пифагора равен √10²-6²=√100-36=√64=8. Отрезок BE является высотой трапеции и равен 8, тогда радиус вписанной окружности вдвое меньше и равен 8/2=4 см.
а) ∠TRM = 1/2 ∠TRS = 174°/2 = 87°, так как биссектриса делит угол пополам;
б) ∠TRS = 2 · ∠MRS = 74° · 2 = 148°.
2. ∠ВАС = ∠ВСА = (180° - ∠АВС)/2 = (180° - 78°)/2 = 102°/2 = 51°, так как в равнобедренном треугольнике углы при основании равны.
∠ВСК = 180° - ∠АСВ = 180° - 51° = 129°, так как это смежные углы.
3.
Пусть ОВ = х см, тогда ОА = 3х см.
АВ = АО + ВО = 36 см, составляем уравнение:
x + 3x = 36
4x = 36
x = 36/4
x = 9 см
ОВ = 9 см
ОА = 3 · 9 = 27 см
4.
∠BOD = 180° - ∠AOD = 180° - 84° = 96° так как это смежные углы.
∠DOK = ∠BOD/2 = 96°/2 = 48°, так как биссектриса делит угол пополам.