2. Средняя линия равнобедренного треугольника, параллельная основанию, равна 10 см. Найдите стороны треугольника, если его периметр равен 46 см.
[4]
3. В параллелограмме ABCD ZA = 60°. Высота BE делит сторону AD на две равные части.
Найдите длину диагонали BD, если периметр параллелограмма равен 56 см.
I
[5]
4. В ДАВС сторона АС = 18см. Сторона АВ разделена на 3 равные части точками М и К.
Через точки деления проведены отрезки МР и KE, параллельные стороне AC и
пересекающие сторону ВС в точках Еи Р. Найдите длины отрезков МР и КЕ.
[4]
5. В равнобокой трапеции один из углов равен 120 диагональ трапеции образует с
основанием угол 30
Найдите основания трапеции, если ее боковая сторона равна 11см.
[6]
2
30° и 70°
Объяснение:
Обозначим угол за Х.
Возможны 2 варианта:
1) Вторые стороны этих углов лежат по разные стороны относительно общего луча
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен их сумме:
Х = 50 + 20 = 70°
2) Вторые стороны этих углов лежат по одну и ту же сторону относительно общего луча.
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен разности 50° и 20°:
Х = 50 - 20 = 30°
З.Ы.: Возможен еще и третий вариант!
Если мы рассматриваем эти углы в пространстве (3-мерном), а не на плоскости, то не-общие стороны этих двух углов могут образовывать друг с другом, в принципе, любой угол - но! - в пределах, ограниченных между 30° и 70°
Плоскость треугольника АВС пересекает параллельные плоскости α и β по параллельным прямым.
ВС║В₁С₁║В₂С₂
По условию AB₁ = B₁B₂ = B₂B = 8/3 см, тогда по теореме Фалеса
AС₁ = С₁С₂ = С₂С = 8/3 см
ΔАВС подобен ΔАВ₁С₁ по двум углам (∠АВ₁С₁ = ∠АВС и ∠АС₁В₁ = ∠АСВ как накрест лежащие)
В₁С₁ : ВС = АВ₁ : АВ = 1 : 3
В₁С₁ = 8/3 см
ΔАВС подобен ΔАВ₂С₂ по двум углам (∠АВ₂С₂ = ∠АВС и ∠АС₂В₂ = ∠АСВ как накрест лежащие)
В₂С₂ : ВС = АВ₂ : АВ = 2 : 3
В₂С₂ = 2·8/3 = 16/3 см
а) треугольник АВС разбивается на
равносторонний треугольник АВ₁С₁;
трапецию В₂В₁С₁С₂;
трапецию ВВ₂С₂С.
б) Pab₁c₁ = (8/3) · 3 = 8 cм
Pb₂b₁c₁c₂ = 8/3 + 8/3 + 8/3 + 16/3 = 40/3 = 13 и 1/3 см
Pbb₂c₂c = 8/3 + 16/3 + 8/3 + 8 = 56/3 = 18 и 2/3 см
Объяснение: