Проекция меньшей стороны на большую сторону треугольника равна 1,4 см.
Объяснение:
Предположим, что искомая проекция равна Х (см), тогда соседняя проекция другой стороны на большую сторону равна: 30-Х (см). Выразим по теореме Пифагора высоту, которая проведена к большей стороне треугольника, используя две другие стороны исходного треугольника, получим:
5² - х² = 29² - (30-х)²
25 - х² = 841 - 900 + 60х - х²
60х = 25-841+900
60х = 84
х= 1,4 (см)
ответ: Проекция меньшей стороны на большую сторону треугольника равна 1,4 см.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Проекция меньшей стороны на большую сторону треугольника равна 1,4 см.
Объяснение:
Предположим, что искомая проекция равна Х (см), тогда соседняя проекция другой стороны на большую сторону равна: 30-Х (см). Выразим по теореме Пифагора высоту, которая проведена к большей стороне треугольника, используя две другие стороны исходного треугольника, получим:
5² - х² = 29² - (30-х)²
25 - х² = 841 - 900 + 60х - х²
60х = 25-841+900
60х = 84
х= 1,4 (см)
ответ: Проекция меньшей стороны на большую сторону треугольника равна 1,4 см.
Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Могу ошибиться в вычислениях.