13. точка а лежит на прямой, отрезок bc пересекает прямую.
пусть м — произвольная точка на отрезке ав. докажите, что отре-
зоic cm пересечет прямую.
14. фома утверждает, что точки на прямой принадлежат сразу
двум полуплоскострям, границей которых является данная прямая.
какая аксиома тогда нарушается и почему?
15. (теорема.) прямая пересекает одну сторону треугольника
в точке, отличной от вершины. докажите, что она пересечет еще
одну его сторону.
16. нарисуйте пятиугольную звезду. проведите прямую, пере-
секающую все ее пить звеньев. мокно ли провести эту прямую так,
чтобы она не проходила через вершины звезды? ответ поясните.
17. на сторонах. ав и вс треугольника авс взяли точки ри с,
а на стороне ас - точку e. докажите, что отрезок be пересекает
прямую рq.
Прямоугольные тр-ки ДАО и NAT подобны т.к. ∠А - общий. Аналогично подобны тр-ки ДВО и MКН, значит ОТ:ТА=ОН:НВ=ДN:NA=2:1.
ОА - радиус описанной окружности около основания пирамиды.
R=OA=a√3/3=30√3/3=10√3.
MN║АВ, MN║KP, значит КР║АВ, значит тр-ки АОВ и ТОН подобны по трём углам.
ОЕ - радиус вписанной окружности в тр-ник АВС ⇒ ОЕ=СЕ/3.
ОО1:О1Е=ОТ:ТА=2:1 ⇒ О1Е=ОЕ/3=СЕ/9.
СО1=СЕ-О1Е-СЕ-СЕ/9=8·СЕ/9.
Итак, СО1:О1Е=(8СЕ/9):(СЕ/9)=8:1.
Доказано.
б) ДN:NA=2:1 ⇒ ДА:NA=3:1.
В подобных тр-ках ДАО и NAT ДA:NA=ДО:NT=3:1 ⇒ NT=ДО/3.
В тр-ке ДАО ДО²=АД²-ОА²=20²-(10√3)²=100,
ДО=10.
NT=10/3.
Так как КР║АВ, то тр-ки АВС и КРС подобны по трём углам.
СО1:О1Е=8:1 ⇒ СЕ:СО1=9:8.
АВ:КР=СЕ:О1Е=9:8 ⇒ КР=8АВ/9=8·30/9=80/3.
В тр-ке ДАВ ДN:NA=2:1 ⇒ ДА:ДN=3:2.
AB:MN=ДА:ДN=3:2 ⇒ MN=2AB/3=2·30/3=20.
Площадь трапеции KMNP:
S=NT·(KP+MN)/2=10·(80/3+20)/6=10(80/3+60/3)/6=10·140/18=700/9≈77.8 (ед²) - это ответ.
Объяснение:
r-радиус основания пирамиды, R-радиус основания конуса, H-апофема пирамиды, а -сторона квадрата
r1=R1 * √2/2 =3√2* √2/2 =3
a1 = 2r1 = 6
H1 =√(h+r1^2) = √4+9 = √13
S1грани = 1/2*a1*H1 = 3√13
S1бок = 4S1грани = 12√13
r2=R2 * √2/2 =3* √2/2
a2 = 2r2 = 3* √2
H2 =√(h+r2^2) = √4+9/2 = √(17/2)
S2грани = 1/2*a2*H2 =1/2*3√17
S2бок = 4S1грани = 6√17
q=S2бок/S1бок = (6√17)/(12√13)=1/2*√(17/13)
S = b1/(1-q) - сумма бесконечно убывающей арифметической прогрессии
b1 = S1бок = 12√13
S = (12√13)/(1 - 1/2*√(17/13))
После преобразований с корнями получается:
S = (8112√3 + 312√663)/455