1) В правильной четырёхугольной пирамиде SABCD точка О-центр основания, S-вершина, SC=25, BD=14. Найдите длину отрезка SO. 2) В правильной четырёхугольной пирамиде SABCD точка О-центр основания, S-вершина, SO=30, SA=34. Найдите длину отрезка AC.
очень Нужно с чертежами.
. вспомним общий вид уравнения сферы.
уравнение сферы с заданным центром и радиусом имеет вид:
(x - x0)^2 + (y - y0)^2 + (z - z0)^2 = r^2,
где x0, y0, z0 - координаты центра сферы, а r - ее радиус.
2. составим уравнение сферы с центром в точке с (2; 0; -3) и радиусом r = 4 см.
подставим координаты центра и значение радиуса в общее уравнение сферы:
(x - 2)^2 + (y - 0)^2 + (z - (-3))^2 = 4^2.
проведем необходимые преобразования (раскроем лишние скобки и возведем в квадрат значение радиуса) и получим уравнение сферы:
(x- 2)^2 + (y )^2 + (z + 3)^2 = 16.
1 способ. можно воспользоваться правилом, что синус угла от 0° до 90° возрастает, синус угла от 90° до 180° убывает.
а) sin 150°; sin 135°; sin 90° ; sin 60°
в) использовать формулу , чтобы свести все углы в первую четверть.
sin (180° - α) = sin α
sin 60° = sin (180° - 60°) = sin 120°
sin 90° = sin (180° - 90°) = sin 90°
sin 135° = sin (180° - 135°) = sin 45°
sin 150° = sin (180° - 150°) = sin 30°
ответ: sin 150°; sin 135°; sin 90° ; sin 60°
по таблице косинусов углов
cos(0°)=cos(0)= 1
cos(60°)=cos(π/3)=1/2
cos(90°)=cos(π/2)= 0
cos(135°)=cos3 x π/4=,7071)
cos(150°)=cos5 x π/6=(-0,8660)
ответ cos(150°). cos(135°). cos(90°). cos(60°)