1 Пусть а- основание, h – высота, S – площадь параллелограмма. Найдите : а) S, если а = 9,1 м, h = 5,5 м; б) а, если S = 36,27 см2 , h = 3,9 см
2. Периметр прямоугольника равен 32,8 см, а одна из его сторон равна 6,4 см. Найдите сторону квадрата, имеющего такую же площадь, как этот прямоугольник
3.Сторона ромба равна 18,6 см, а один из углов ромба равен 30°. Найдите площадь ромба.
24см²
Объяснение:
△ABD - равнобедренный т.к. AB = BD по условию,
Пусть BH - высота, она проведена к основанию,
Высота равнобедренного треугольника, проведённая к его основанию является так же и медианой.
⇒ BH - медиана;
AH = HD т.к. H - основание медианы;
AH = AD:2 = 6см:2 = 3см.
△AHB - прямоугольный т.к. ∠AHB = 90°,
Квадрат гипотенузы равен сумме квадратов катетов (т. Пифагора).
AB² = AH²+BH²;
BH² = AB²-AH²;
BH² = 5²-3²;
BH² = 25-9 = 16 = 4²;
BH = 4 см.
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
BH - высота параллелограмма ABCD, проведённая к стороне AD;
S = BH·AD;
S = 4см·6см = 24см².