В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
elenanovikova21
elenanovikova21
30.10.2022 01:54 •  Геометрия

1. постройте сечение четырёхугольной призмы, плоскостью, проходящей через 3 точки, принадлежащим трём боковым рёбрам 2. сторона основания правильной треугольной призмы равна 6см, боковое ребро - 4 см. Найдите Sсеч, проходящего через сторону верхнего основания и противолежащую вершину нижнего основания

Показать ответ
Ответ:
JohnSto
JohnSto
01.07.2021 22:41

Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.

Найдем углы ΔBDC.

В ΔABD проведем медиану DK.

АК = КВ = 1 / 2АВ = 2: 2 = 1 см.

Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),

Если ∟A = 60 °, то ΔAKD - piвносторонний.

Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.

∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.

∟BKD = 180 ° - 60 ° = 120 °.

ΔBKD - равнобедренный (KB = KD = 1 см), тогда

∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.

Рассмотрим ΔАВС:

∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.

∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.

Рассмотрим ΔBDC:

∟DBC + ∟C + ∟BDC = 180 °.

40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.

Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °

Объяснение:

0,0(0 оценок)
Ответ:
makslitovchenk
makslitovchenk
15.08.2021 08:27

параллелепипеде верны следующие равенства:

\begin{gathered}\vec{AB}=\vec{A_1B_1}=\vec{DC}=\vec{D_1C_1}\\\vec{BC}=\vec{B_1C_1}=\vec{AD}=\vec{A_1D_1}\\\vec{AA_1}=\vec{BB_1}=\vec{DD_1}=\vec{CC_1}\\\end{gathered}AB=A1B1=DC=D1C1BC=B1C1=AD=A1D1AA1=BB1=DD1=CC1

следовательно

\begin{gathered}\vec{AB}+\vec{B_1C_1}+\vec{DD_1}+\vec{CD}=\vec{AB}+\vec{BC}+\vec{CD}+\vec{DD_1}=\vec{AD_1}vec{BD_1}-\vec{B_1C_1}=\vec{BD_1}-\vec{BC}=\vec{CD_1}\end{gathered}AB+B1C1+DD1+CD=AB+BC+CD+DD1=AD1BD1−B1C1=BD1−BC=CD1

2.\begin{gathered}\vec{BN}=\vec{BD}+\vec{DN}=\vec d +\frac{1}{2}\vec{DS}=\vec d+\frac{1}{2}(\vec{BS}-\vec{BD})=\\=\vec d+\frac{1}{2}\vec{BS}-\frac{1}{2}\vec d=\frac{1}{2}\vec d+\frac{1}{2}(\frac{1}{2}(\vec{BA}+\vec{BC}))=\frac{1}{2}\vec d + \frac{1}{4}\vec a + \frac{1}{4}\vec c\end{gathered}BN=BD+DN=d+21DS=d+21(BS−BD)==d+21BS−21d=21d+21(

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота