1. Describing home. To describe the place, we use THERE ISY THERE ARE
Lama
Example:
There is a sofa in the living room
There are four pictures on the wall.
101 We use there is and there are to say that something exists.
We use there is for singular (единственное число) аnd thеrе аrе fоr plural
(множественное число) .
ответ:Номер 3
<1=7Х
<2=2Х
7Х+2Х=180 градусов,как односторонние
9Х=180
Х=180:9
Х=20
<1=20•7=140 градусов
<2=20•2=40 градусов
<3=<2=40 градусов,как накрест лежащие
Номер 4
<3 и противоположный ему-вертикальные и равны между собой
Этот вертикальный и угол 4 называются односторонними,и если прямые параллельны,то они в сумме равны 180 градусов
47+133=180 градусов
а|| b
Тут тоже самое
Угол 2 и противоположный ему угол называются вертикальными и равны между собой
Этот вертикальный и угол 1- односторонние
<1+<2=180 градусов,как односторонние
<1=(180-58):2=61 градус
<2=61+58=119 градусов
Номер 5
<МРN смежный
<МРТ=180-70=110 градусов
<МРК=<ТРК=110:2=55 градусов,
т к биссектриса делит <МРТ пополам
<ТРК=<МКР=55 градусов,как накрест лежащие при РТ || МК и секущей РК
Если при пересечении прямых секущей накрест лежащие углы равны,то прямые параллельны
<М=<К=70,как углы при основании равнобедренного треугольника или равнобедренной трапеции
<РКТ=70-55=15 градусов
Объяснение:
Решение:
ВD- высота, медиана и биссектрисса равнобедренного треугольника ∆АВС;
АD=DC;
DC=AC/2=16/2=8ед.
∆ВDC- прямоугольный треугольник
Теорема Пифагора
ВD=√(BC²-DC²)=√(17²-8²)=
=√((17+8)(17-8))=√(25*9)=5*3=15ед.
ответ: х=15ед.
№6)
RN=NM=6ед ∆RNM-равносторонний;
RK- высота, медиана и биссектрисса.
NK=KM
NK=NM/2=6/2=3
∆RKN- прямоугольный треугольник
По теореме Пифагора
RK=√(RN²-NK²)=√(6²-3²)=
=√((6-3)(6+3))=√(3*9)=3√3ед.
ответ: х=3√3ед.
№7)
РТ=PR/2=x/2.
По теореме Пифагора
RP²-PT²=RT²
Составляем уравнение.
х²-(х/2)²=8²
х²-х²/4=64. |×4.
4х²-х²=256
3х²=256. |÷3
х²=256/3
х=√(256/3)
х=16/√3
х=16√3/3 ед
ответ: х=16√3/3 ед