В правильной пирамиде ЕАВС боковые грани - прямоугольные равнобедренные треугольники с катетами 7√2 см, значит гипотенузы в них (стороны основания пирамиды) равны 7√2·√2=14 см. В тр-ке ЕАВ опустим высоту ЕМ, а в тр-ке ЕМС проведём высоту МК. М∈АВ, К∈ЕС. В тр-ке ЕАВ ЕМ=ab/c=ЕА·ЕВ/АВ=(7√2)²/14=7 см. В правильном тр-ке АВС высота СМ=а√3/2=14√3/2=7√3 см. Высота пирамиды ЕО опускается в центр вписанной в основание окружности. r=МО=СМ/3=7√3/3 см. В тр-ке ЕМО ЕО=√(ЕМ²-МО²)=√(7²-(7√3/3)²)=7√6/3 см. Площадь тр-ка ЕМС можно вычислить двумя через высоты ЕО и МК, запишем их, сразу приравняв друг к другу: СМ·ЕО/2=ЕС·МК/2, МК=СМ·ЕО/ЕС, МК=(7√3·7√6)/(3·7√2)=7√18/3√2=7√9/3=7 см. МК - расстояние между скрещивающимися рёбрами АВ и ЕС. В правильной пирамиде все подобные расстояния равны. ответ: 7 см.
Пусть даны две прямые
y=k _{1} xy=k
1
x ,y=k _{2} xy=k
2
x
Причем tg \alpha _{1}=k _{1}tgα
1
=k
1
tg \alpha _{2} =k _{2}tgα
2
=k
2
Найдем тангенс угла между этими прямыми:
tg( \alpha _{1} - \alpha _{2})= \frac{tg \alpha _{1}-tg \alpha _{2} }{1+tg \alpha _{1}tg \alpha _{2} }= \frac{k _{1}-k _{2} }{1+k _{1}k _{2} }tg(α
1
−α
2
)=
1+tgα
1
tgα
2
tgα
1
−tgα
2
=
1+k
1
k
2
k
1
−k
2
Прямые перпендикулярны, угол между ними 90⁰. Тангенс 90⁰ не существует, значит в последней дроби знаменатель равен 0,k _{1} k _{2} =-1k
1
k
2
=−1
это необходимое и достаточное условие перпендикулярности двух прямых
y=k _{1}xy=k
1
x ,y=k _{2} xy=k
2
x
Данная прямая может быть записана в виде y= \frac{5}{2} x+ \frac{7}{2}y=
2
5
x+
2
7
Угловой коэффициент равен 5/2,
Значит угловой коэффициент перпендикулярной ей прямой будет равен (-2/5).
ответ. y=- \frac{2}{5}xy=−
5
2
x
И все прямые ей параллельные, то есть
y=- \frac{2}{5}xy=−
5
2
x +С,
где С- любое действительное число
Объяснение:
решение не мое
В тр-ке ЕАВ опустим высоту ЕМ, а в тр-ке ЕМС проведём высоту МК. М∈АВ, К∈ЕС.
В тр-ке ЕАВ ЕМ=ab/c=ЕА·ЕВ/АВ=(7√2)²/14=7 см.
В правильном тр-ке АВС высота СМ=а√3/2=14√3/2=7√3 см.
Высота пирамиды ЕО опускается в центр вписанной в основание окружности. r=МО=СМ/3=7√3/3 см.
В тр-ке ЕМО ЕО=√(ЕМ²-МО²)=√(7²-(7√3/3)²)=7√6/3 см.
Площадь тр-ка ЕМС можно вычислить двумя через высоты ЕО и МК, запишем их, сразу приравняв друг к другу:
СМ·ЕО/2=ЕС·МК/2,
МК=СМ·ЕО/ЕС,
МК=(7√3·7√6)/(3·7√2)=7√18/3√2=7√9/3=7 см.
МК - расстояние между скрещивающимися рёбрами АВ и ЕС. В правильной пирамиде все подобные расстояния равны.
ответ: 7 см.