Стороны треугольника 6 см 8 см а угол лежащий против меньшей стороны равен 40 градусов, найдите сторону треуг-а.
Еще одна задача
Стороны треуг-а равны 10 см 8 см а угол между ними равен 30 градусов найдите высоты треугольника проведенные к этим сторонам
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4
которой является правильный многоугольник, а вершина пирамиды
проецируется в центр этого многоугольника. Высота боковой грани,
проведенная из вершины правильной пирамиды,
называется апофемой, боковые ребра равны, боковые грани равны
(все являются равнобедренными треугольниками)".
Следовательно, углы наклона боковых ребер к основанию равны -
это углы между ребром и высотой основания (правильного треугольника).
Углы углы наклона боковых граней равны - это углы между апофемой
и высотой основания.
Высота правильного треугольника по формуле равна h=(√3/2)*a.
Эта высота является и медианой, значит она делится точкой О
(центром основания) в отношении 2:1, считая от вершины.
ОС=(2/3)*h=(√3/3)*a.
OH=(1/3)*h=(√3/6)*a.
Тогда значение угла наклона боковых ребер к основанию найдем из прямоугольного треугольника AOS:
tgα=OS/OC = 2a/(√3*a/3)=2√3 ≈3,46.
α=arctg(3,46). α ≈73,9°
Значение угла наклона боковых граней к основанию найдем из прямоугольного треугольника НOS:
tgβ=OS/OH = 2a/(√3*a/6)=4√3 ≈6,93.
β=arctg(6,93). β ≈81,8°.