1. Даны координаты вектора и конечной точки этого вектора. Определи координаты начальной точки вектора. AB−→−{7;−4}.
B(6;−5); A( ; ).
2. Даны координаты вектора и начальной точки этого вектора. Определи координаты конечной точки вектора.
MN−→−{6;5}.
M(−9;−8); N( ; ).
1) Сонаправленные (также колинеарные)
2) Противоположно направленные (также колинеарны)
3) Равные (также они соноправлены и колинеарны)
Объяснение:
• Коллинеарные векторы - это ненулевые векторы, которые лежат либо на одной прямой, либо на параллельных прямых.
• Сонаправленные векторы - это коллинеарные ненулевые векторы, которые одинаково направлены (в одну сторону).
• Противоположно направленные векторы - это коллинеарные ненулевые векторы, которые направлены в противоположную сторону.
• Равные векторы - это сонаправленные векторы, с равными длинами.
• Нулевой вектор - это вектор у которого начало и конец совпадают (он обозначается точкой).
• Неколинерные векторы - это ненулевые векторы, которые НЕ лежат на одной прямой, либо НЕ лежат на параллельных прямых.
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.