1. Центральный угол AOB опирается на хорду AB длиной 6. При этом угол OAB равен 60°. Найдите радиус окружности.
2. В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 30°. Найдите величину угла OAB.
3. Найдите градусную меру центрального ∠MON, если известно, NP — диаметр, а градусная мера ∠MNP равна 18°.
4. Найдите ∠DEF, если градусные меры дуг DE и EF равны 150° и 68° соответственно.
5. Найдите градусную меру ∠ACB, если известно, что BC является диаметром окружности, а градусная мера центрального ∠AOC равна 96°.
6. В окружности с центром O AC и BD — диаметры. Угол ACB равен 26°. Найдите угол AOD. ответ дайте в градусах.
7. Прямоугольный треугольник с катетами 5 см и 12 см вписан в окружность. Чему равен радиус этой окружности?
8. Точки A и B делят окружность на две дуги, длины которых относятся как 9:11. Найдите величину центрального угла, опирающегося на меньшую из дуг. ответ дайте в градусах.
9. В угол величиной 70° вписана окружность, которая касается его сторон в точках A и B. На одной из дуг этой окружности выбрали точку C так, как показано на рисунке. Найдите величину угла ACB.
10. Величина центрального угла AOD равна 110°. Найдите величину вписанного угла ACB. ответ дайте в градусах.
11. Точки A, B, C и D лежат на одной окружности так, что хорды AB и СD взаимно перпендикулярны, а ∠BDC = 25°. Найдите величину угла ACD.
12 Треугольник ABC вписан в окружность с центром в точке O. Найдите градусную меру угла C треугольника ABC, если угол AOB равен 48°.
13. Точка О — центр окружности, ∠AOB = 84° (см. рисунок). Найдите величину угла ACB (в градусах).
14. На окружности с центром O отмечены точки A и B так, что Длина меньшей дуги AB равна 63. Найдите длину большей дуги.
15. На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA = 38°. Найдите угол NMB. ответ дайте в градусах.
16. Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC = 15° и ∠OAB = 8°. Найдите угол BCO. ответ дайте в градусах.
17. AC и BD — диаметры окружности с центром O. Угол ACB равен 79°. Найдите угол AOD. ответ дайте в градусах.
18. В угол C величиной 83° вписана окружность, которая касается сторон угла в точках A и B. Найдите угол AOB. ответ дайте в градусах.
19. Треугольник ABC вписан в окружность с центром в точке O. Найдите градусную меру угла C треугольника ABC, если угол AOB равен 115°.
20. Сторона AC треугольника ABC содержит центр описанной около него окружности. Найдите , если . ответ дайте в градусах нужны только ответы без решений
∠B=180° - ∠A=180° - 60°=120° (∠A и ∠B - внутренние односторонние
углы при параллельных прямых).
∠BTA=180°-(∠TAB+∠B)=180°-(30°+120°)=30° (сумма углов Δ)
ΔABT - равнобедренный.
АB=BT=6 cм
BC=BT+TC=6 +2=8 см
BC=AD=8 см (противоположные стороны)
BD²=AB²+AD²-2AB*ADcos60°=
=6²+8² -2*6*8*(1/2)=36+64-48=52
BD=√52=2√13 (см)
AC²=AB²+BC²-2AB*BCcos120°=
=6²+8²-2*6*8*cos(90°+30°)=
=36+64-96*(-sin30°)=100-96*(-1/2)=100+48=148
AC=√148=2√37 (см)
ответ: 2√13 см и 2√37 см.
ответ:106.76 см
Объяснение:
Я таких случаях доверяю подбору.Вам надо,чтобы периметр был равен 80 см,а площадь-240см.Вспомним формулу,по которой можно вычислить S(площадь) прямоугольного треугольника.S=1/2× a×b.a и b-это катеты.Нам дано,что S=240 см^2,значит 240=1/2×a×b.Отсюда,a×b=480 см.Теперь же,довертесь интуиции!Какие целые числа при умножении дадут 480?Например,60 и 80.Но 80-это периметр.То есть,эта пара не подходит.Возьмем 16 и 30.Это вполне возможно.Найдем по теореме Пифагора третью сторону(т.к. это прямоугольный треугольник).16^2+30^2=1156;x^2=1156;x=34.Давайте сложим все стороны.Если мы подобрали верно,у нас должно получится 80.Сложим:16+30+34=80.Опа!!Верно!Теперь мы знаем все три стороны.Нарисуем описанную окружность.Чтобы найти радиус этой окружности,надо гипотенузу поделить на 2.Получаем:34/2=17.Радиус знаем.Так зачем же мы его искали.Все просто:длина окружности вычисляется по формуле:C=2пr,где п=3.14.С=2×3.14×17=106.76.Удачи!Если Вам понравилось объяснение отметьте ответ как лучший.