РЕШЕНИЕ
Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания.
-боковые ребра правильной пирамиды равны;
-все боковые грани — равные равнобедренные треугольники
высота пирамиды Н=l*sin(b)
основание пирамиды равносторонний треугольник
все углы равны - 60 град
все стороны равны -а
ВК - медиана, биссектриса, высота
ВО=l*cos(b)
BO=2/3*BK
BK=3/2*BO=3/2* l*cos(b)
сторона основания a =BK/sin60=3/2* l*cos(b)/(√3/2)= √3*l*cos(b)
высота боковой грани SM=√(SB^2-MB^2)=√(l^2-(a/2)^2)=√(l^2-((√3*l*cos(b))/2)^2)=
=1/2*l*√(4-3cos^2(b))
выразим ПЛОЩАДЬ треугольника SDB
- через ВЫСОТУ и ОСНОВАНИЕ двумя
S =1/2*BD*SM =1/2*SB*DF
тогда имеем отношение BD*SM =SB*DF => DF= BD*SM /SB
h=DF=a* 1/2*l*√(4-3cos^2(b)) / l =√3*l*cos(b) *1/2*l*√(4-3cos^2(b)) / l=
=√3/2 *l*cos(b)√(4-3cos^2(b))
теорема косинусов
a^2 = h^2+h^2-2h^2*cosA =2h^2(1-cosA)
cosA=1 - a^2 / (2*h^2)
cosA =1- (√3*l*cos(b))^2 / (2*√3/2 *l*cos(b)√(4-3cos^2(b)))^2 = 1 - 1 / (4-3cos^(b))
A = arccos (1 - 1 / (4-3cos^(b)) )
ответ < A = arccos (1 - 1 / (4-3cos^(b)) ) ; Н=l*sin(b)
1.
Дано
V1=2л =0.002м3 -вода
p1=1000 кг/м3
c1=4200 Дж/кг*С -по таблице
m2=400г=0.4кг -алюминий
с2=930 Дж/кг*С -по таблице
T1=15 C
T2=75 C
m3=30г=0.030кг -керосин
q=4.6*10^7 Дж/кг -по таблице
КПД - ? примуса
КПД = (Q1+Q2) /Q3
Q1=c1m1(T2-T1)=c1*V1*p1*(T2-T1)=4200*0.002*1000*(75-15)= 504000 Дж
Q2=c2m2(T2-T1)=930*0.4*(75-15)= 22320 Дж
Q3=qm3=4.6*10^7*0.030=1380000 Дж
КПД = (Q1+Q2) /Q3=(504000+22320) / 1380000=0.38 (38%)
ответ КПД =0.38 (38%)
2
m1=0.1кг -лед
с1=2060 Дж/кг*С -по таблице
q1=335000 Дж/кг -по таблице
m2=5кг -вода
p2=1000 кг/м3
c2=4200 Дж/кг*С -по таблице
Т1=-10 С
T2=80 C
T3= 0 C
T- ? установившаяся температура
Q -тепло для охлаждения ГОРЯЧЕЙ воды от Т2= 80 С до Т3=0 С
Q=c2m2(T3-T2)=4200*5*(0-80)= -1680000 Дж
Q1 -тепло для нагревания льда от Т1= -10 С до Т3=0 С
Q1=c1m1(T3-T1)=2060*0.1*(0-(-10))= 2060 Дж
Q3 - тепло для полного плавления /таяния льда
Q3=q1m1=335000*0.1=33500 Дж
|Q| >|Q1+Q3|
ВЫВОД :
у ГОРЯЧЕЙ воды достаточно тепла , чтобы нагреть лед до Т3=0 С ,затем
полностью его расплавить и нагреть ХОЛОДНУЮ воду от Т3=0 С до Т
ТОГДА
Q2 - тепло для охлаждения ГОРЯЧЕЙ воды от Т2= 80 С до Т
Q2=c2m2(T-T2)=4200*5*(T-80)
Q4 - тепло для нагревания ХОЛОДНОЙ воды от Т3= 0 С до Т
Q4=c2m1(T-T3)=4200*0.1*(T-0)
уравнение теплового баланса
Q1+Q2+Q3+Q4=0
подставим известные значения
2060+4200*5*(T-80)+ 33500+4200*0.1*(T-0)=0
21420*Т -1644440=0
21420*Т =1644440
T=76.77 = 76.8 = 77 C - ответ на выбор
ответ 77 С
РЕШЕНИЕ
Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания.
-боковые ребра правильной пирамиды равны;
-все боковые грани — равные равнобедренные треугольники
высота пирамиды Н=l*sin(b)
основание пирамиды равносторонний треугольник
все углы равны - 60 град
все стороны равны -а
ВК - медиана, биссектриса, высота
ВО=l*cos(b)
BO=2/3*BK
BK=3/2*BO=3/2* l*cos(b)
сторона основания a =BK/sin60=3/2* l*cos(b)/(√3/2)= √3*l*cos(b)
высота боковой грани SM=√(SB^2-MB^2)=√(l^2-(a/2)^2)=√(l^2-((√3*l*cos(b))/2)^2)=
=1/2*l*√(4-3cos^2(b))
выразим ПЛОЩАДЬ треугольника SDB
- через ВЫСОТУ и ОСНОВАНИЕ двумя
S =1/2*BD*SM =1/2*SB*DF
тогда имеем отношение BD*SM =SB*DF => DF= BD*SM /SB
h=DF=a* 1/2*l*√(4-3cos^2(b)) / l =√3*l*cos(b) *1/2*l*√(4-3cos^2(b)) / l=
=√3/2 *l*cos(b)√(4-3cos^2(b))
теорема косинусов
a^2 = h^2+h^2-2h^2*cosA =2h^2(1-cosA)
cosA=1 - a^2 / (2*h^2)
cosA =1- (√3*l*cos(b))^2 / (2*√3/2 *l*cos(b)√(4-3cos^2(b)))^2 = 1 - 1 / (4-3cos^(b))
A = arccos (1 - 1 / (4-3cos^(b)) )
ответ < A = arccos (1 - 1 / (4-3cos^(b)) ) ; Н=l*sin(b)
1.
Дано
V1=2л =0.002м3 -вода
p1=1000 кг/м3
c1=4200 Дж/кг*С -по таблице
m2=400г=0.4кг -алюминий
с2=930 Дж/кг*С -по таблице
T1=15 C
T2=75 C
m3=30г=0.030кг -керосин
q=4.6*10^7 Дж/кг -по таблице
КПД - ? примуса
РЕШЕНИЕ
КПД = (Q1+Q2) /Q3
Q1=c1m1(T2-T1)=c1*V1*p1*(T2-T1)=4200*0.002*1000*(75-15)= 504000 Дж
Q2=c2m2(T2-T1)=930*0.4*(75-15)= 22320 Дж
Q3=qm3=4.6*10^7*0.030=1380000 Дж
КПД = (Q1+Q2) /Q3=(504000+22320) / 1380000=0.38 (38%)
ответ КПД =0.38 (38%)
2
Дано
m1=0.1кг -лед
с1=2060 Дж/кг*С -по таблице
q1=335000 Дж/кг -по таблице
m2=5кг -вода
p2=1000 кг/м3
c2=4200 Дж/кг*С -по таблице
Т1=-10 С
T2=80 C
T3= 0 C
T- ? установившаяся температура
РЕШЕНИЕ
Q -тепло для охлаждения ГОРЯЧЕЙ воды от Т2= 80 С до Т3=0 С
Q=c2m2(T3-T2)=4200*5*(0-80)= -1680000 Дж
Q1 -тепло для нагревания льда от Т1= -10 С до Т3=0 С
Q1=c1m1(T3-T1)=2060*0.1*(0-(-10))= 2060 Дж
Q3 - тепло для полного плавления /таяния льда
Q3=q1m1=335000*0.1=33500 Дж
|Q| >|Q1+Q3|
ВЫВОД :
у ГОРЯЧЕЙ воды достаточно тепла , чтобы нагреть лед до Т3=0 С ,затем
полностью его расплавить и нагреть ХОЛОДНУЮ воду от Т3=0 С до Т
ТОГДА
Q2 - тепло для охлаждения ГОРЯЧЕЙ воды от Т2= 80 С до Т
Q2=c2m2(T-T2)=4200*5*(T-80)
Q4 - тепло для нагревания ХОЛОДНОЙ воды от Т3= 0 С до Т
Q4=c2m1(T-T3)=4200*0.1*(T-0)
уравнение теплового баланса
Q1+Q2+Q3+Q4=0
подставим известные значения
2060+4200*5*(T-80)+ 33500+4200*0.1*(T-0)=0
21420*Т -1644440=0
21420*Т =1644440
T=76.77 = 76.8 = 77 C - ответ на выбор
ответ 77 С