Термин «ортогональная проекция» ето– как название отображения и как название образа при этом отображении.
отображение, сопоставляющее точке P точку P', также называется ортогональной проекцией. В этом случае говорят также об ортогональном проектировании.
ортогональное проектирование плоскости на лежащую в ней прямую или пространства на плоскость – это частный случай параллельного проектирования, в котором направление проекции перпендикулярно прямой (или плоскости), на которую проектируют. аналогично, ортогональную проекцию пространства на прямую можно рассматривать как параллельную проекцию на прямую вдоль плоскости, перпендикулярной прямой. Поэтому ортогональная проекция сохраняет все свойства параллельной проекции.
Объяснение:
Первым делом раскроем скобки:
(Х^2+2х+х+2)-(4х^2+20х-3х-15)=(х^2-9х)
Преобразовываем и окончательно раскрываем скобки, внимательно смотря на знаки:
Х^2+3х+2-4х^2-17х+15=х^2-9х
Так как у нас получится полное квадратное уравнение, все переносим вправо, для удобства и ищем подобные:
Х^2-х^2-4х^2+3х+9х-17х+2+15=0
-4х^2-5х+17=0
Домнажаем на - 1, для удобства:
4х^2+5х-17=0
Ищем дискриминант, а потом ищем корни:
Д=25+272=297
Приблизительно корень из 297, это 17.23
Х1=(-5+17.23):8=12.23:8≈1.5
Х2=(-5-17.23):8=-22.23:8≈2.8
Термин «ортогональная проекция» ето– как название отображения и как название образа при этом отображении.
отображение, сопоставляющее точке P точку P', также называется ортогональной проекцией. В этом случае говорят также об ортогональном проектировании.
ортогональное проектирование плоскости на лежащую в ней прямую или пространства на плоскость – это частный случай параллельного проектирования, в котором направление проекции перпендикулярно прямой (или плоскости), на которую проектируют. аналогично, ортогональную проекцию пространства на прямую можно рассматривать как параллельную проекцию на прямую вдоль плоскости, перпендикулярной прямой. Поэтому ортогональная проекция сохраняет все свойства параллельной проекции.