▪Сравним: (4/3)√2 и (6/5)√2, т.к. в левой и правой части √2 = √2, значит будем сравнивать: (4/3) и (6/5) ▪чтобы сравнить 4/3 и 6/5 приведем дроби к НОЗ = 15: 4/3 = 20/15 6/5 = 18/15 ▪сравним: 20/15 > 18/15 (т.к. знаменатели равны сравниваем только числители 20>18)
▪Вывод:
20/15 > 18/15, значит 4/3 > 6/5 соответственно (4/3)√2 > (6/5)√2, (1/3)√32 > (1/5)√72 М > N
- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
N = (1/5)√72 = 1/5 × √36 × √2 = 1/5 × √(6^2) × √2 = 1/5 × 6√2 = (6/5)√2;
▪Сравним:
(4/3)√2 и (6/5)√2,
т.к. в левой и правой части √2 = √2, значит будем сравнивать:
(4/3) и (6/5)
▪чтобы сравнить 4/3 и 6/5 приведем дроби к НОЗ = 15:
4/3 = 20/15
6/5 = 18/15
▪сравним:
20/15 > 18/15
(т.к. знаменатели равны сравниваем только числители 20>18)
▪Вывод:
20/15 > 18/15, значит
4/3 > 6/5 соответственно
(4/3)√2 > (6/5)√2,
(1/3)√32 > (1/5)√72
М > N
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)