-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
1) 2x - 3y = 6
Точки пересечения с осью Ох: принимаем у=0
2x - 3*0 = 6
2x = 6
x = 3
(3;0) - точка пересечения с осью Ох
Точки пересечения с осью Оу: принимаем х=0
2*0 - 3у = 6
-3у = 6
у = -2
(0;-2) - точка пересечения с осью Оу.
2) x² + y = 4
x² + 0 = 4
x² = 4
x = ± 2
(-2;0), (2;0) - точки пересечения с осью абсцисс.
0² + у = 4
у = 4
(0;4) - точка пересечения с осью ординат.
3) |x| + |y| = 7
Точки пересечения с осью Ох: принимаем у = 0.
|x| + |0| = 7
|x| = 7
x = ± 7
(-7;0), (7;0) - точки пересечения с осью абсцисс.
Точки пересечения с осью Оу: принимаем х = 0.
|0| + |y| = 7
|y| = 7
y = ± 7
(0;-7), (0;7) - точки пересечения с осью ординат.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
1) 2x - 3y = 6
Точки пересечения с осью Ох: принимаем у=0
2x - 3*0 = 6
2x = 6
x = 3
(3;0) - точка пересечения с осью Ох
Точки пересечения с осью Оу: принимаем х=0
2*0 - 3у = 6
-3у = 6
у = -2
(0;-2) - точка пересечения с осью Оу.
2) x² + y = 4
Точки пересечения с осью Ох: принимаем у=0
x² + 0 = 4
x² = 4
x = ± 2
(-2;0), (2;0) - точки пересечения с осью абсцисс.
Точки пересечения с осью Оу: принимаем х=0
0² + у = 4
у = 4
(0;4) - точка пересечения с осью ординат.
3) |x| + |y| = 7
Точки пересечения с осью Ох: принимаем у = 0.
|x| + |0| = 7
|x| = 7
x = ± 7
(-7;0), (7;0) - точки пересечения с осью абсцисс.
Точки пересечения с осью Оу: принимаем х = 0.
|0| + |y| = 7
|y| = 7
y = ± 7
(0;-7), (0;7) - точки пересечения с осью ординат.
Объяснение: