Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
вот:
Объяснение:
1) Дана система уравнений, которую будем решать методом подстановки.
7х + 3у = 43;
4х - 3у = 67;
2) Выразим переменную 3у через х в первом выражении:
3у = 43 - 7х;
4х - 3у = 67;
3) Подставим переменную 3у во второе выражение:
4х - (43 - 7х) = 67;
4) Раскроем скобки:
4х - 43 + 7х = 67
5) Упорядочим уравнение:
11х = 110
6) Найдем х:
х = 110 / 11 = 10;
8) Найдем у, подставив найденную переменную х в любое из выражений:
70 + 3у = 43;
3у = -27;
у = -27 / 3 = -9.
ответ: переменная х = 10, переменная у = -9.