Для решения запишем формулу бинома Ньютона:
Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение .
Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение .
Рассмотрим многочлен , где:
Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.
Для многочлена :
- степень определяется выражением , то есть степень равна 84
- свободный член равен
- степень определяется выражением , то есть степень равна 6
Наконец, для многочлена получим:
- степень определяется выражением , то есть степень равна 90
Сумма степени и свободного члена многочлена :
ответ: 98
ответ: 50 м и 60 м
Объяснение: Пусть длина участка x м, а ширина - y м, тогда площадь участка равна xy, а периметр равен 2·(x + y).
Составим систему уравнений:
xy = 3000
2x + 2y = 220
Второе уравнение разделим на 2:
x + y = 110
Решим систему подстановки:
x = 110 - y
(110 - y)·y = 3000
110y - y² = 3000
-y² + 110y - 3000 = 0
y² - 110y + 3000 =0
D = b² - 4ac = (-110)² - 4·3000 = 12100 - 12000 = 100
x₁ = 110 + √100 / 2 = 110 +10 / 2 = 60
x₂ = 110 - 10 / 2 = 50
y₁ = 110 - 60 = 50
y₂ = 110 - 50 = 60
Решением системы являются две пары чисел (60; 50) и (50; 60). Следовательно, стороны прямоугольника равны 50м и 60м.
Для решения запишем формулу бинома Ньютона:
Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение .
Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение .
Рассмотрим многочлен , где:
Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.
Для многочлена :
- степень определяется выражением , то есть степень равна 84
- свободный член равен
Для многочлена :
- степень определяется выражением , то есть степень равна 6
- свободный член равен
Наконец, для многочлена получим:
- степень определяется выражением , то есть степень равна 90
- свободный член равен
Сумма степени и свободного члена многочлена :
ответ: 98
ответ: 50 м и 60 м
Объяснение: Пусть длина участка x м, а ширина - y м, тогда площадь участка равна xy, а периметр равен 2·(x + y).
Составим систему уравнений:
xy = 3000
2x + 2y = 220
Второе уравнение разделим на 2:
xy = 3000
x + y = 110
Решим систему подстановки:
xy = 3000
x = 110 - y
(110 - y)·y = 3000
110y - y² = 3000
-y² + 110y - 3000 = 0
y² - 110y + 3000 =0
D = b² - 4ac = (-110)² - 4·3000 = 12100 - 12000 = 100
x₁ = 110 + √100 / 2 = 110 +10 / 2 = 60
x₂ = 110 - 10 / 2 = 50
y₁ = 110 - 60 = 50
y₂ = 110 - 50 = 60
Решением системы являются две пары чисел (60; 50) и (50; 60). Следовательно, стороны прямоугольника равны 50м и 60м.