х|x| = x
При х ≥ 0 уравнение имеет вид: х*x = x
х² = x
х² - x = 0
х(х -1) = 0
х = 0 или х = 1
(т.е при х ≥ 0 уравнение имеет два корня)
При х < 0 уравнение имеет вид: х*(-x) = x
- х² = x
- х² - x = 0
- х(х +1) = 0
х = 0 или х = - 1
(т.е при х < 0 уравнение тоже имеет два корня)
Имеем:
при х ≥ 0 при х < 0 х = 0 или х = 1 или х = 0 или х = - 1
=> корни: х = 0 или х = 1 или х = - 1
ответ: 3.
Воспользуемся уравнением для пучка прямых, проходящих через заданную точку для того, чтобы найти угловой коэффициент и точку пересечения с осью Y.
Нажмите, чтобы увидеть больше шагов...
Угловой коэффициент:
6
пересечение с осью Y:
1
Любую прямую можно построить при двух точек. Выберем два значения
x
и подставим их в уравнение, чтобы определить соответствующие значения
y
0
7
Построим прямую с углового коэффициента и пересечения с осью Y или опираясь на две точки прямой.
Нарисуй лучше сам а то потом сложно будет рисовать. Я тебе решение написал так что это за
х|x| = x
При х ≥ 0 уравнение имеет вид: х*x = x
х² = x
х² - x = 0
х(х -1) = 0
х = 0 или х = 1
(т.е при х ≥ 0 уравнение имеет два корня)
При х < 0 уравнение имеет вид: х*(-x) = x
- х² = x
- х² - x = 0
- х(х +1) = 0
х = 0 или х = - 1
(т.е при х < 0 уравнение тоже имеет два корня)
Имеем:
при х ≥ 0 при х < 0
х = 0 или х = 1 или х = 0 или х = - 1
=> корни: х = 0 или х = 1 или х = - 1
ответ: 3.
Воспользуемся уравнением для пучка прямых, проходящих через заданную точку для того, чтобы найти угловой коэффициент и точку пересечения с осью Y.
Нажмите, чтобы увидеть больше шагов...
Угловой коэффициент:
6
пересечение с осью Y:
1
Любую прямую можно построить при двух точек. Выберем два значения
x
и подставим их в уравнение, чтобы определить соответствующие значения
y
x
y
0
1
1
7
Построим прямую с углового коэффициента и пересечения с осью Y или опираясь на две точки прямой.
Угловой коэффициент:
6
пересечение с осью Y:
1
x
y
0
1
1
7
Нарисуй лучше сам а то потом сложно будет рисовать. Я тебе решение написал так что это за