Производную надо скорее знать, чем понимать, то есть с заученными правилами ты без проблем сможешь решить любую задачку на производную. Во вложениях я оставлю некоторые правила дифференцирования и прозводные некоторых элементарных функций.
Но вернемся к нашим баранам. Задача 2.
f=(1+2x)/(1-2x). По правилу производной от частного:
Объяснение:
Пусть 1 -я труба заполняет бассейн за х часов, тогда 2-я труба заполнит за (х+5) часов.
За 1 час первая труба заполнит 1/х часть трубы, а за 6 часов 6/х часть трубы.
За 1 час вторая труба заполнит 1/(х+5) часть трубы, а за 6 часов 6/(х+5) часть трубы.
Составим и решим уравнение
6/х+6/(х+5)=1 х>0
6(х+5)+6х=х(х+5)
6х+30+6х=х²+5х
х²-7х-30=0
По теореме, обратной теореме Виета х1=-3; х2=10
х1=-3 - не подходит так как х>0
1 -я труба заполняет бассейн за 10 часов, тогда 2-я труба заполнит за 10+5 =15часов.
ответ:1 -я труба за 10 часов; 2-я труба заполнит за 15 часов.
Производную надо скорее знать, чем понимать, то есть с заученными правилами ты без проблем сможешь решить любую задачку на производную. Во вложениях я оставлю некоторые правила дифференцирования и прозводные некоторых элементарных функций.
Но вернемся к нашим баранам. Задача 2.
f=(1+2x)/(1-2x). По правилу производной от частного:
f'=((1+2x)' * (1-2x) - (1-2x)' * (1+2x)) / (1-2x)^2 =
=(2*(1-2x) - (-2)*(1+2x)) / (1-2x)^2 =
= (2-4x+2+4x) / (1-2x)^2 = 4 / (1-2x)^2
Итого f'(0)=4/(1-0)^2 = 4.
Задача 4.
f=ln(sqrt(x^2+1))
По свойству производной от логарифма:
f' = (sqrt(x^2+1))' / sqrt(x^2+1)
По свойству производной от корня (рассмотрим только числитель):
g' = (sqrt(x^2+1))' = ((x^2+1)^(1/2))' = (1/2) * (1/sqrt(x^2+1)) * (x^2+1)'
Ну и оставшаяся производная равна
h' = (x^2+1)' = 2x
Итак, собираем все вместе:
f' = g'/sqrt(x^2+1) = h'/(2*(x^2+1) = x/(x^2+1)
Фух, теперь ищем желанное f'(1):
f'(1)=1/(1+1)=1/2
Ну вот вроде и все, если будут вопросы - пиши, попытаюсь ответить.