Пусть производительность первой группы это Х, производительность второй группы это Y.
Тогда "Одна группа виноградарей работала 4 ч., а другая — 6 ч. Выяснилось, что обе группы собрали одинаковое количество винограда" запишем как:
4 * X = 6 * Y
Фраза "Определи, сколько центнеров винограда убрала первая группа виноградарей за 4 ч., если известно, что каждый час она убирала на 16 ц больше второй группы" дает нам второе уравнение:
X - 16 = Y.
А найти нам надо 4 *X, то есть "сколько центнеров винограда убрала первая группа виноградарей за 4 ч."
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел равна 9. Их четыре.
Следовательно, искомая вероятность Р(А)= 4/36 = 1/9
2) При бросании двух игральных кубиков могут выпасть следующие варианты:
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел меньше семи.
Их пятнадцать.
Следовательно, искомая вероятность Р(В)=15/36=5/12
ответ: 32 ц
Объяснение:
Перепишем текст задачи в алгебраическом виде.
Пусть производительность первой группы это Х, производительность второй группы это Y.
Тогда "Одна группа виноградарей работала 4 ч., а другая — 6 ч. Выяснилось, что обе группы собрали одинаковое количество винограда" запишем как:
4 * X = 6 * Y
Фраза "Определи, сколько центнеров винограда убрала первая группа виноградарей за 4 ч., если известно, что каждый час она убирала на 16 ц больше второй группы" дает нам второе уравнение:
X - 16 = Y.
А найти нам надо 4 *X, то есть "сколько центнеров винограда убрала первая группа виноградарей за 4 ч."
Решаем систему уравнений методом подстановки:
4 * Х = 6 * (X - 16)
6 * X - 4 * X = 16
2 * X = 16
X = 8
=> 4 * X = 4 * 8 = 32 ц