1) 12 автомашин.
2) 15 автомашин
3) 5 тонн.
Объяснение:
Пусть х т перевозили на каждой машине фактически, тогда (х+1) т планировали перевозить.
Составляем уравнение и находим х:
60/х - 60/(х+1) = 3
60х + 60 - 60 х = 3х² + 3х
3х² + 3х - 60 = 0
х² + х - 20 = 0
х ₁,₂ = - 1/2 ± √((1/4) + 20) = -1/2 ± 9/2
х = 8/2 = 4 т - фактически перевозили на каждой автомашине;
х+1 = 5 т - планировали перевозить на каждой автомашине.
Теперь отвечаем на все вопросы.
1) Сколько автомашин требовалось сначала?
Сначала требовалось:
60 : 5 = 12 автомашин.
2) Сколько автомашин фактически использовали?
Фактически использовали:
60 : 4 = 15 автомашин
3) Сколько тонн груза планировалось перевозить на каждой машине?
На каждой автомашине планировалось перевозить 5 т груза.
Определить промежутки монотонности функции, не используя производную функции.
y = (x² - x - 20)² - 18
=================================
Область определения функции D (y) = R
Квадратичная функция в квадратичной функции
y = f(z); z = g(x)
Чтобы найти промежутки монотонности квадратичной функции, нужно найти абсциссу вершины параболы.
- координата вершины
z = 0 - координата вершины параболы
x₁ = -4; x₂ = 5 - координаты вершин параболы
Таким образом, есть три точки, которые определяют промежутки монотонности функции y = (x² - x - 20)² - 18.
x₁ = -4; x₀ = 0,5; x₂ = 5
x ∈ (-∞; -4] - функция убывает : y(-5) > y(-4)
x ∈ [-4; 0,5] - функция возрастает : y(-4) < y(0)
x ∈ [0,5; 5] - функция убывает : y(1) > y(2)
x ∈ [5; +∞) - функция возрастает : y(5) < y(6)
1) 12 автомашин.
2) 15 автомашин
3) 5 тонн.
Объяснение:
Пусть х т перевозили на каждой машине фактически, тогда (х+1) т планировали перевозить.
Составляем уравнение и находим х:
60/х - 60/(х+1) = 3
60х + 60 - 60 х = 3х² + 3х
3х² + 3х - 60 = 0
х² + х - 20 = 0
х ₁,₂ = - 1/2 ± √((1/4) + 20) = -1/2 ± 9/2
х = 8/2 = 4 т - фактически перевозили на каждой автомашине;
х+1 = 5 т - планировали перевозить на каждой автомашине.
Теперь отвечаем на все вопросы.
1) Сколько автомашин требовалось сначала?
Сначала требовалось:
60 : 5 = 12 автомашин.
2) Сколько автомашин фактически использовали?
Фактически использовали:
60 : 4 = 15 автомашин
3) Сколько тонн груза планировалось перевозить на каждой машине?
На каждой автомашине планировалось перевозить 5 т груза.
Определить промежутки монотонности функции, не используя производную функции.
y = (x² - x - 20)² - 18
=================================
Область определения функции D (y) = R
y = (x² - x - 20)² - 18
Квадратичная функция в квадратичной функции
y = f(z); z = g(x)
Чтобы найти промежутки монотонности квадратичной функции, нужно найти абсциссу вершины параболы.
- координата вершины
z = 0 - координата вершины параболы
x₁ = -4; x₂ = 5 - координаты вершин параболы
Таким образом, есть три точки, которые определяют промежутки монотонности функции y = (x² - x - 20)² - 18.
x₁ = -4; x₀ = 0,5; x₂ = 5
x ∈ (-∞; -4] - функция убывает : y(-5) > y(-4)
x ∈ [-4; 0,5] - функция возрастает : y(-4) < y(0)
x ∈ [0,5; 5] - функция убывает : y(1) > y(2)
x ∈ [5; +∞) - функция возрастает : y(5) < y(6)