В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Nurzhan94
Nurzhan94
12.01.2020 02:00 •  Алгебра

Выразить логарифм 8 по основанию 30 через a и b, если а=lg5, b=lg3

Показать ответ
Ответ:
dimanchik0108
dimanchik0108
08.10.2020 02:27
Lg5=a;lg3=b;log30(8)=?
log30(8)=lg8/lg30=3lg2/(lg5+lg2+lg3)=
3lg2/(a+b+lg2)
lg2=?
lg5=a;lg(5•2)/2=(lg5+lg2)/lg2=a
lg5+lg2=alg2
lg5=lg2*(a-1)
lg2=lg5/(a-1)=a/(a-1)
lg2=a/(a-1)
log30(8)=3lg2/(a+b+lg2)=
3a/(a-1)*1/(a+b+a/(a-1))
3a/(a-1)*((a-1)/((a+b)(a-1)+a)=
3a/((a+b)(a-1)+a)=
3a/(a^2-a+ab-b+a)=
3a/(a^2+ab-b)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота