Выполнить построение графиков функций в одной системе координат (в тетради или на отдельном листочке): y= 0,3х+1,6 и y=3,3х+0,1 выполнить построение графиков функций в одной системе координат (в тетради или на отделбном листочке)
Покажем, что люди в возрасте от 1 до 18 лет в счастливую пару входить не могут. Обозначим через x возраст самого молодого человека, входящего в счастливую пару и через y возраст его партнера. Тогда имеет место неравенство x ≥ y/2 + 9 или (x-y/2) ≥ 9. Заметим, что (x-y/2) < x/2, поскольку y > x. Имеет место неравенство 2(x-y/2) ≥ 18, но так как 2(x-y/2) < x, то x > 18, то есть, возраст самого молодого человека, входящего в счастливую пару, строго больше 18 лет.
Покажем, что все пары (19, 20), (21, 22), (23, 24), ..., (93, 94) будут счастливыми. Легко проверить, что если x >= 10, то для чисел 2x-1 и 2x имеют место неравенства 2x-1 >= x + 9 и 2x >= (2x-1)/2 + 9. Всего счастливых пар будет 92/2 - 18/2 = 46 - 9 = 37.
Разберёмся с первым уравнением, прежде всего с модулем. Если представить себе систему координат с осью ординат, параллельно перенесенной вправо на единицу, то получится, что модуль раскрывается положительно в 1й и 3й четвертях и отрицательно во 2й и 4й.
Рассмотрим случай 1й и 3й четвертей. Получаем неравенство:
Отсюда
В случае 2й и 4й четвертей всё аналогично.
Теперь учтём и второе уравнение. Проведем прямую y=-1 и будем рассматривать только то, что лежит справа от этой прямой.
Изобразим на графике четверти и прямые. Нас интересует площадь пересечения 3й четверти и пространством между 1й парой прямых и 2й четверти и пространством второй пары прямых. Если изобразить график, видно, что искомая площадь равна площади равнобедренного треугольника. Его основание и высоту мы найдём из графика. Высота равна 5/3, а основание 10. Значит, площадь равна 25/3
Покажем, что люди в возрасте от 1 до 18 лет в счастливую пару входить не могут. Обозначим через x возраст самого молодого человека, входящего в счастливую пару и через y возраст его партнера. Тогда имеет место неравенство x ≥ y/2 + 9 или (x-y/2) ≥ 9. Заметим, что (x-y/2) < x/2, поскольку y > x. Имеет место неравенство 2(x-y/2) ≥ 18, но так как 2(x-y/2) < x, то x > 18, то есть, возраст самого молодого человека, входящего в счастливую пару, строго больше 18 лет.
Покажем, что все пары (19, 20), (21, 22), (23, 24), ..., (93, 94) будут счастливыми. Легко проверить, что если x >= 10, то для чисел 2x-1 и 2x имеют место неравенства 2x-1 >= x + 9 и 2x >= (2x-1)/2 + 9. Всего счастливых пар будет 92/2 - 18/2 = 46 - 9 = 37.
25/3
Объяснение:
Разберёмся с первым уравнением, прежде всего с модулем. Если представить себе систему координат с осью ординат, параллельно перенесенной вправо на единицу, то получится, что модуль раскрывается положительно в 1й и 3й четвертях и отрицательно во 2й и 4й.
Рассмотрим случай 1й и 3й четвертей. Получаем неравенство:
Отсюда
В случае 2й и 4й четвертей всё аналогично.
Теперь учтём и второе уравнение. Проведем прямую y=-1 и будем рассматривать только то, что лежит справа от этой прямой.
Изобразим на графике четверти и прямые. Нас интересует площадь пересечения 3й четверти и пространством между 1й парой прямых и 2й четверти и пространством второй пары прямых. Если изобразить график, видно, что искомая площадь равна площади равнобедренного треугольника. Его основание и высоту мы найдём из графика. Высота равна 5/3, а основание 10. Значит, площадь равна 25/3