Напомним, по определению корня четной степени он всегда больше равен 0. 1 - x ≥ 0 x ≤ 1
ОДЗ , подкоренное выражение должно быть больше равно 0 . находить его сейчас не будем, проверим корни когда их найдем
тупо возводим в квадрат
x^3 + 2x^2 - 6x - 3 = (1 - x)^2
x^3 + 2x^2 - 6x - 3 = 1 -2x + x^2
x^3 + x^2 -4x - 4 = 0
x^2(x + 1) - 4(x + 1) = 0
(x + 1)(x^2 - 4) = 0
(x+1)(x+2)(x-2) = 0
x = -1 проверяем поодкоренное выражение оно должно быть ≥ 0 -1 + 2 + 6 - 3 = 4 > 0 да подходит
x = 2 нет , у нас ограничения x ≤ 1
x = -2 -8+8+12-3 = 9 > 0 да подходит
корни -1 и -2
D=b²-4ac=16-4*6*(-2)=16+48=64
D>0 значит корня 2
x1=(-b+√D)/2a=(4+8)/12=1
x2=(-b-√D)/2a=(4-8)/12=-1/3
2) 18-2x²=0
2x²=18
x²=9
x=±3
5x²-3=0
5x²=3
x²=3/5
x=±√3/5
5x²-8x+3=0
D=64-4*5*3=64-60=4
x1=1
x2=3/5
x²+9x-10=0
D=81-4*(-10)=121
x1=1
x2=-10
(x²-x)/6=2
x²-x=12
x²-x-12=0
D=1-4*(-12)=49
x1= 4
x2= -3
3)Пусть x-наименьшее число, тогда второе число x+8, по условию задачи первое число на второе равно 273,то есть
x*(x+8)=273
x²+8x-273=0
D=64-4*(-273)=1156 (√1156=34)
x1=13
x2=-21
То есть отсюда получаем 2 случая
Если первое число 13, то второе 21
Если первое число - 21,то второе - 13
4)я не поняла условие, если напишете понятнее, я решу
Напомним, по определению корня четной степени он всегда больше равен 0. 1 - x ≥ 0 x ≤ 1
ОДЗ , подкоренное выражение должно быть больше равно 0 . находить его сейчас не будем, проверим корни когда их найдем
тупо возводим в квадрат
x^3 + 2x^2 - 6x - 3 = (1 - x)^2
x^3 + 2x^2 - 6x - 3 = 1 -2x + x^2
x^3 + x^2 -4x - 4 = 0
x^2(x + 1) - 4(x + 1) = 0
(x + 1)(x^2 - 4) = 0
(x+1)(x+2)(x-2) = 0
x = -1 проверяем поодкоренное выражение оно должно быть ≥ 0 -1 + 2 + 6 - 3 = 4 > 0 да подходит
x = 2 нет , у нас ограничения x ≤ 1
x = -2 -8+8+12-3 = 9 > 0 да подходит
корни -1 и -2