Верное условие Дима шел три часа при этом скорость его была больше 4км в час, но меньше 6км в час. Сколько км всего мог пройти Дима за это время?
Шёл время t=3ч Скорость V >4 км/ч; V< 6км/ч 4Путь S=? S=V•t Наименьшее S>4•3 Наибольшее S<6•3 Записываем так 12 ответ: Дима мог пройти путь больше 12км и меньше 18км.
Действиями 1)) 3•4=12км путь но его скорость больше 4км/ч, значит 12км<чем 2)) 3•6=18км, путь, но скорость меньше чем 6км/ч, значит 18км> чем от 12<путь<18 ответ: мог пройти больше 12 км и меньше 18 км.
Дима шел три часа при этом скорость его была больше 4км в час, но меньше 6км в час. Сколько км всего мог пройти Дима за это время?
Шёл время t=3ч
Скорость V >4 км/ч; V< 6км/ч
4Путь S=?
S=V•t
Наименьшее S>4•3
Наибольшее S<6•3
Записываем так
12
ответ: Дима мог пройти путь больше 12км и меньше 18км.
Действиями
1)) 3•4=12км путь но его скорость больше 4км/ч, значит 12км<чем
2)) 3•6=18км, путь, но скорость меньше чем 6км/ч, значит 18км> чем
от 12<путь<18
ответ: мог пройти больше 12 км и меньше 18 км.
Для того, чтобы найти точки пересечения прямых у = 3 - х и у = 2х, нужно приравнять правые части и решить уравнение относительно переменной х.
Следовательно получим:
3 - х = 2х (перенесем переменную х из левой части в правую, поменяв знак на противоположный);
3 = 2х + х;
3 = х * (2 + 1);
3 = х * 3 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 3 : 3;
х = 1.
Тогда у = 3 - 1 = 2.
Следовательно точка пересечения прямых у = 3 - х и у = 2х имеет координаты: (1; 2).
ответ: (1; 2).
Объяснение: