сos^6x-sin^6x=(cos^2x-sin^2x)(cos^4x+sin^4x+sin^2xcos^2x)=cos2x*(1-sin^2xcos^2x)=
cos2x*(1-4*1/4*sin^2xcos^2x)=cos2x*(1-sin^2(2x)/4)=0,6*(1-0,64/4)=0,504
cos2x=0,6 cos^2(2x)=0,36 sin^2(2x)=0,64
(cos^2x+sin^2x)^2=cos^4x+sin^4x+sin^2xcos^2x+sin^2xcos^2x
сos^6x-sin^6x=(cos^2x-sin^2x)(cos^4x+sin^4x+sin^2xcos^2x)=cos2x*(1-sin^2xcos^2x)=
cos2x*(1-4*1/4*sin^2xcos^2x)=cos2x*(1-sin^2(2x)/4)=0,6*(1-0,64/4)=0,504
cos2x=0,6 cos^2(2x)=0,36 sin^2(2x)=0,64
(cos^2x+sin^2x)^2=cos^4x+sin^4x+sin^2xcos^2x+sin^2xcos^2x