У этого термина существуют и другие значения, см. Прогрессия.
Арифмети́ческая прогре́ссия — числовая последовательность вида
{\displaystyle a_{1},\ a_{1}+d,\ a_{1}+2d,\ \ldots ,\ a_{1}+(n-1)d,\ \ldots }a_1,\ a_1+d,\ a_1+2d,\ \ldots,\ a_1+(n-1)d, \ \ldots,
то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа {\displaystyle d}d (шага, или разности прогрессии):
{\displaystyle a_{n}=a_{n-1}+d\quad }a_n=a_{n-1} + d \quad
Любой (n - й) член прогрессии может быть вычислен по формуле общего члена:
Обозначим катеты прямоугольного треугольника за (а) и (b), тогда согласно условия задачи:
а+b=14 (см)- первое уравнение
Площадь прямоугольного треугольника находится по формуле:
(а*b)/2
По условию задачи:
а*b/2 =24 см²-второе уравнение
Поучилась система уравнений:
a+b=14
a*b/2=24
Из первого уравнения найдём значение (а) и подставим во второе уравнение:
а=14-b
(14-b)*b/2=24
14b-b²=48
b2-14b+48=0 -это простое приведённое квадратное уравнение, решаеи без дискриминанта:
b1,2=7+-√(49-48) =7+-√1=7+-1
b1=7+1=8
b2=7-1=6
Получились два значения, они оба подходят к условию задачи:
а1=14-8=6
а2-14-6=8
ответ: 6см
Объяснение:
Арифмети́ческая прогре́ссия — числовая последовательность вида
{\displaystyle a_{1},\ a_{1}+d,\ a_{1}+2d,\ \ldots ,\ a_{1}+(n-1)d,\ \ldots }a_1,\ a_1+d,\ a_1+2d,\ \ldots,\ a_1+(n-1)d, \ \ldots,
то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа {\displaystyle d}d (шага, или разности прогрессии):
{\displaystyle a_{n}=a_{n-1}+d\quad }a_n=a_{n-1} + d \quad
Любой (n - й) член прогрессии может быть вычислен по формуле общего члена:
{\displaystyle a_{n}=a_{1}+(n-1)d}a_n=a_1 + (n-1)d