В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
щгоот
щгоот
28.03.2023 09:57 •  Алгебра

Вычислить интеграл 1). ∫₁² (3x² - 4x - 2/x²) dx 2) ∫₁⁴ (4√x - 3x²)dx

Показать ответ
Ответ:
Саламандра1111
Саламандра1111
05.10.2020 01:12
Интегралы очень простые, тут и решать нечего. Я понимаю, если были бы сложные, там с заменой или с решением по частям. Но тут решать то:
Разность интеграла есть разность интегралов.
То есть каждую часть ты берешь и интегрируешь, далее подставляешь границы. 
Ну я в общем все реши, держи:

__________________________________________
\int\limits^2_1 {( 3x^{2}-4x- \frac{2}{ x^{2} }) } \, dx = \int\limits^2_1 {3 x^{2} } \, dx - \int\limits^2_1 {4x} \, dx - \int\limits^2_1 { \frac{2}{ x^{2} } } \, dx = 
 x^{3} - 2 x^{2} + \frac{2}{x}

Там понятно, что у каждого границы от 1 до 2, поэтому я не писал.
Далее находим их значения:
(8-1)-(8-2)+(1-2)=0

________________________________________
\int\limits^4_1 {(4 \sqrt{x} -3 x^{2} )} \, dx = \int\limits^4_1 {4 \sqrt{x} } \, dx - \int\limits^4_1 {3 x^{2} } \, dx = 4 \int\limits^4_1 { \sqrt{x} } \, dx - 3 \int\limits^4_1 { x^{2} } \, dx
\frac{8 \sqrt{ x^{3} } }{3}- x^{3}
Далее подставляем границы и получаем:
Но я подумал, желательно тебе расписать еще так:
\frac{8}{3} \sqrt{ x^{3} } - x^{3} 
Так будет легче подставлять границы.
\frac{8}{3}(8-1)-(64-1)
7* \frac{8}{3}-63
\frac{56}{3}-63= \frac{56-189}{3}= -\frac{133}{3}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота