В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Karinka1Malvinka
Karinka1Malvinka
10.10.2022 04:03 •  Алгебра

Вычислить cos x, если sin x = 0.6 когда 0<х<пи/2 Возможные ответы
0.6, - 0.6 0.8 и - 0.8

Показать ответ
Ответ:
sirkovake
sirkovake
15.10.2020 13:57

\sin x = 0,6, \ \ \ 0 < x < \dfrac{\pi}{2}

Используем основное тригонометрическое тождество: \sin^{2}x + \cos^{2}x = 1

Откуда \cos^{2}x = 1 - \sin^{2}x

Значение x находится в пределах от 0 до \dfrac{\pi}{2}, что соответствует его расположению в первой координатной четверти, а функция косинус в первой координатной четверти положительна, поэтому:

\cos x = \sqrt{1 - \sin^{2}x} = \sqrt{1 - (0,6)^{2}}= \sqrt{1 - 0,36} = \sqrt{0,64} = 0,8

ответ: 0,8

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота