Выберите систему уравнений, решением которой является пара чисел (-1; 2) (все системы) 1) 1/x -1 =2y x2 + y2 = 5 2) x2 + y = 3 x + y/2 =1 3) 3y - 2x = 7 -2/x =y 4) 2x + 3y = y x2 -3 = y
Сначала напишем уравнение прямой в общем виде: у = ах + с Здесь а (коэффициент х) - наклон прямой, который зависит от угла между прямой и положительным направлением оси Х. Если точнее, то это тангенс угла наклона (это для тех, кто хоть немного знает тригонометрию).
У параллельных прямых одинаковые а, т.к. углы наклона равны. Следовательно: у = 5 + 6х у = 6х + 5 (а = 6), следовательно у параллельной прямой тоже а = 6: у = 6х - 4
Следующая пара: у = 12 - 7х у = -7х + 12, т.е. а = -7, следовательно у параллельной прямой тоже а = -7: у = -7х + 6
{ y² =2px ; x=2y -5.
y² =2p(2y -5) ;
y² -4py +10p =0 ;
D/4 =0 ⇒(2p)² -10p =0 ;
4p² -10p =0 ;
4p(p -5/2) =0 ;
(если p =0 , y² =0⇔у =0 , что не парабола , а уравнения оси абсцисс).
p =5/2. || y² =2px =2*(5/2)*x =5x ||
ответ : 5/2.
проверка:
{ y² =5x ; x=2y -5.
y² =5(2y -5) ;
(y -5)² = 0 ;
y =5.⇒ x=2y -5= 2*5 -5 =5 .
T(5 ; 5) точка касания .
Уравнения касательной функции y² =5x в точке T(5 ; 5).
y -y(5) = y '(5)(x-5) . || k =tqα =y '(5 ||
y = √5*√x (y =5>0) ; y(5) = √5*√5 =5 .
y ' =(√5)/2√x ; y '(5) =(√5)/2√5=1/2 ⇒ y -5=(1/2)(x-5)⇔ 2y -10 =x -5⇔
x -2y +5 =0 ;
у = ах + с
Здесь а (коэффициент х) - наклон прямой, который зависит от угла между прямой и положительным направлением оси Х. Если точнее, то это тангенс угла наклона (это для тех, кто хоть немного знает тригонометрию).
У параллельных прямых одинаковые а, т.к. углы наклона равны. Следовательно:
у = 5 + 6х
у = 6х + 5 (а = 6), следовательно у параллельной прямой тоже а = 6:
у = 6х - 4
Следующая пара: у = 12 - 7х
у = -7х + 12, т.е. а = -7, следовательно у параллельной прямой тоже а = -7:
у = -7х + 6