Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
Рассмотрим для начала f(x) = -x + 12x - 34
Производная:
f'(x) = -2x + 12
f'(x) = 0 —> x = 6 - аргумент, при котором достигается максимальное значение.
f(6) = 2
9^ (-34 + 12x - x) принимает максимальное значение, когда -34 + 12x - x максимально, то есть равно двум. Значит максимум равен 9 = 81
ответ: 81
Объяснение:
функция показательная и т.к. основание 9 больше единицы, то функция возрастает, следовательно, наибольшее значение достигается при наибольшем х.
рассмотрим степень как вторую функцию – параболу, ветви которой направлены вниз: наибольшее значение этой параболы будет в её вершине
по формуле найдем абциссу вершины –b/2а. Абцисса равна –6, следовательно оридината равна –34+12·6–36=2
следовательно наибольшее значение функции у=9 во второй степени т.е. 81
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
Рассмотрим для начала f(x) = -x + 12x - 34
Производная:
f'(x) = -2x + 12
f'(x) = 0 —> x = 6 - аргумент, при котором достигается максимальное значение.
f(6) = 2
9^ (-34 + 12x - x) принимает максимальное значение, когда -34 + 12x - x максимально, то есть равно двум. Значит максимум равен 9 = 81
ответ: 81
Объяснение:
функция показательная и т.к. основание 9 больше единицы, то функция возрастает, следовательно, наибольшее значение достигается при наибольшем х.
рассмотрим степень как вторую функцию – параболу, ветви которой направлены вниз: наибольшее значение этой параболы будет в её вершине
по формуле найдем абциссу вершины –b/2а. Абцисса равна –6, следовательно оридината равна –34+12·6–36=2
следовательно наибольшее значение функции у=9 во второй степени т.е. 81