1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Объяснение: Уравнение эллипса (x^2 / a) + (y^2 / b) = 1, где а - полуось, располагающаяся на оси Ох, а b - полуось, располагающаяся на оси Оу
1) По условию b = 1/2 * 4√7 = 2√7, т.к. фокусы лежат на оси Оу
с - половина расстояния м/ду фокусами
F1F2 = √((0-0)^2 + (√3 + √3)^2) = 2√3
c = 1/2 * 2√3 = √3
c^2 = b^2 - a^2
a = √(28 - 12) = 4
Уравнение примет вид:
(x^2 / 16) + (y^2 / 28) = 1
2) 1) a = 5, b = 3
длины осей эллипса 2a = 10, 2b = 6
Координаты вершин: A1 (-5;0) A2 (5;0) B1(0;-3) B2(0;3)
2) a = 4, b =9
длины осей эллипса 2a = 8, 2b = 18
Координаты вершин: A1 (-4;0) A2 (4;0) B1(0;-9) B2(0;9)