Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
(1+4x-x²)-20/(4x-x²)>0
((1+4x-x²)(4x-x²)-20)/(x(4-x))>0
(4x+16x²-4x³-x²-4x³+x⁴-20)/(x(4-x))>0
(x⁴-8x³+15x²+4x-20)/(x(4-x)>0
x⁴-8x³+15x²+4x-20=0
x₁=2
x⁴-8x³+15x²+4x-20 I_x-2_
x⁴-2x³ I x³-6x²+3x+10
-6x³+15x²
-6x³+12x²
3x²+4x
3x²-6x
10x-20
10x-20
0
x³-6x²+3x+10=0
x₂=2
x³-6x²+3x+10 I_x-2_
x³-2x² I x²-4x-5
-4x²+3x
-4x²+8x
-5x+10
-5x+10
0
x²-4x-5=0 D=36
x₃=-1 x₄=5. ⇒
(x-2)²(x+1)(x-5)/(x(4-x)>0
-∞--1+0__-__2__-__4+5-+∞
x∈(-1;0)U(4;5).
∑дл. инт.=(0-(-1))+(5-4)=1+1=2.
ответ: ∑дл. инт.=2.