Даны вершины треугольника АВС на плоскости А (1;2)В (3;-1)С (-1;4
а) уравнение прямой АВ:
(х - 1)/2 = (у - 2)/(-3) это каноническое уравнение.
Оно же в общем виде 3х + 2у - 7 = 0.
С угловым коэффициентом у = (-3/2)х + (7/2).
б) уравнение высоты СD опущенной на АВ.
Угловой коэффициент к(СД) = -1/к(АВ) = -1/(-3/2) = 2/3.
Уравнение СД: у = (2/3)х + в. Подставим координаты точки С.
4 = (2/3)*(-1) + в. Отсюда в = 4 + (2/3) = 14/3.
СД: у = (2/3)х + (14/3) или 2х - 3у + 14 = 0.
в) уравнение медианы ВЕ .
Точка Е как середина АС: Е(0; 3).
Уравнение ВЕ: (х - 3)/(-3) = (у + 1)/4 или 4х + 3у - 9 = 0.
г) точку пересечения СD и ВЕ .
Решим систему 2х - 3у + 14 = 0, умн(-2) -4х + 6 у - 28 = 0
4х + 3у - 9 = 0 4х + 3у - 9 = 0.
9у - 37 = 0
у = 37/9.
х = (3*(37/9) - 14) /2 = (-5/6).
Точка О((-5/6); (37/9).
д) уравнение прямой проходящей через вершину С параллельно АВ .
Угловой коэффициент равен к(АВ) = (-3/2). Точку С:
4 = (-3/2)*(-1)+ в, в = 4 - (3/2) = 5/2.
Уравнение у = (-3/2)х + (5/2) или 3х + 2у - 5 = 0.
Даны вершины треугольника: А (3; -1), В (-5; 5), С (-4; 0).
Для определения угла С есть несколько
1) Геометрический.
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √100 = 10.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √26 ≈ 5,09902.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √50 ≈ 7,071068.
Внутренние углы по теореме косинусов:
cos C= АC²+ВС²-АВ² = -0,33282
2*АC*ВС
C = arc cos(-0,33282) = 1,910089 радиан,
C = 109,44003 градусов.
2) Векторный.
Вектор СА(-7; 1), модуль равен √(49 + 1) = √50.
Вектор СВ(1; -5). модуль равен √(1 + 25) = √26.
cos C = ((-7)*1 + 1*(-5))/(√50*√26) = -12/√50 = -0,33282.
Угол дан выше.
Даны вершины треугольника АВС на плоскости А (1;2)В (3;-1)С (-1;4
а) уравнение прямой АВ:
(х - 1)/2 = (у - 2)/(-3) это каноническое уравнение.
Оно же в общем виде 3х + 2у - 7 = 0.
С угловым коэффициентом у = (-3/2)х + (7/2).
б) уравнение высоты СD опущенной на АВ.
Угловой коэффициент к(СД) = -1/к(АВ) = -1/(-3/2) = 2/3.
Уравнение СД: у = (2/3)х + в. Подставим координаты точки С.
4 = (2/3)*(-1) + в. Отсюда в = 4 + (2/3) = 14/3.
СД: у = (2/3)х + (14/3) или 2х - 3у + 14 = 0.
в) уравнение медианы ВЕ .
Точка Е как середина АС: Е(0; 3).
Уравнение ВЕ: (х - 3)/(-3) = (у + 1)/4 или 4х + 3у - 9 = 0.
г) точку пересечения СD и ВЕ .
Решим систему 2х - 3у + 14 = 0, умн(-2) -4х + 6 у - 28 = 0
4х + 3у - 9 = 0 4х + 3у - 9 = 0.
9у - 37 = 0
у = 37/9.
х = (3*(37/9) - 14) /2 = (-5/6).
Точка О((-5/6); (37/9).
д) уравнение прямой проходящей через вершину С параллельно АВ .
Угловой коэффициент равен к(АВ) = (-3/2). Точку С:
4 = (-3/2)*(-1)+ в, в = 4 - (3/2) = 5/2.
Уравнение у = (-3/2)х + (5/2) или 3х + 2у - 5 = 0.
Даны вершины треугольника: А (3; -1), В (-5; 5), С (-4; 0).
Для определения угла С есть несколько
1) Геометрический.
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √100 = 10.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √26 ≈ 5,09902.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √50 ≈ 7,071068.
Внутренние углы по теореме косинусов:
cos C= АC²+ВС²-АВ² = -0,33282
2*АC*ВС
C = arc cos(-0,33282) = 1,910089 радиан,
C = 109,44003 градусов.
2) Векторный.
Вектор СА(-7; 1), модуль равен √(49 + 1) = √50.
Вектор СВ(1; -5). модуль равен √(1 + 25) = √26.
cos C = ((-7)*1 + 1*(-5))/(√50*√26) = -12/√50 = -0,33282.
Угол дан выше.