Запишем формулу: P=m/n, где m – число исходов, благоприятствующих осуществлению события X, а n – число всех равновозможных элементарных исходов.
Для начала определим вероятность выпадения какого-либо числа при одном броске. Определённое число выпадает одно, а всего исходов может быть 6 (6 граней кубика). Значит, вероятность выпадения какого-либо числа = 1/6.
Так как бросков мы делаем 2, количество возможных результатов возводится во 2-ю степень, и вероятность выпадения какого-либо числа уже = 1 / 6 × 6 = 1/36. В последующем, мы будем домножать числитель на количество удовлетворяющих нас результатов.
Сумма выпавших очков делится на 5 при следующих результатах
1) 1 и 4 (=5)
2) 2 и 3 (=5)
3) 3 и 2 (=5)
4) 4 и 1 (=5)
5) 5 и 5 (=10)
Как видим, количество удовлетворяющих нас результатов = 5. Значит, вероятность выпадения числа, кратного 5 = 1 × 5 / 36 = 5/36 ≈ 0.139 = 13.9%
Сумма выпавших очков меньше, чем 8 при следующих результатах:
1) 1 и 1
2) 1 и 2
3) 1 и 3
4) 1 и 4
5) 1 и 5
6) 1 и 6
7) 2 и 1
8) 2 и 2
9) 2 и 3
10) 2 и 4
11) 2 и 5
12) 3 и 1
13) 3 и 2
14) 3 и 3
15) 3 и 4
16) 4 и 1
17) 4 и 2
18) 4 и 3
19) 5 и 1
20) 5 и 2
21) 6 и 1
Как видим, количество удовлетворяющих нас результатов = 21. Значит, вероятность выпадения чисел, сумма которых меньше 8 = 1 × 21 / 36 = 21/36 = 7/12 ≈ 0.583 = 58.3%
Произведение выпавших очков делится на 12 при следующих результатах:
1) 2 и 6
2) 3 и 4
3) 4 и 3
4) 6 и 2
Как видим, количество удовлетворяющих нас значений =4. Значит, вероятность выпадения чисел, произведение которых =12 составляет 1 × 4 / 36 = 4/36 = 1/9 ≈ 0,111 = 11,1%
Количество очков, выпавших в первый раз, и количество очков, выпавших
во второй раз, отличаются на 3 возможно при следующих результатах:
1) 1 и 4
2) 4 и 1
3) 2 и 5
4) 5 и 2
5) 3 и 6
6) 6 и 3
Как видим, количество удовлетворяющих нас результатов =6. Значит, вероятность выпадения чисел, количество очков которых, выпавших в первый раз, и количество очков, выпавших во второй раз, отличаются на 3 составляет 1 × 6 / 36 = 6/36 = 1/6 ≈ 0,166 = 16,6%
В решении.
Объяснение:
1) Найти целые корни уравнения:
х³ - 2х² - 5х + 6 = 0
Корни кубического уравнения находятся в делителях свободного члена (6), это: 1; -1; 2; -2; 3; -3; 6; -6.
Подставляем значение х по очереди в уравнение:
х = 1 1 - 2 - 5 + 6 = 0, корень;
х = -1 -1 - 2 + 5 + 6 ≠ 0, не корень.
х = 2 8 - 8 - 10 + 6 ≠ 0, не корень.
х = -2 -8 - 8 + 10 + 6 = 0, корень;
х = 3 27 - 18 - 15 + 6 = 0, корень;
х = -3 -27 -18 + 15 + 6 ≠ 0, не корень.
В кубическом уравнении 3 корня, дальше можно не вычислять.
Решения уравнения: х₁ = 1; х₂ = -2; х₃ = 3.
2. Симметрическое уравнение:
х⁴ - 7х³ - 6х² - 7х + 1 = 0
1) Разделить уравнение на х²:
х² - 7х - 6 - 7/х + 1/х² = 0
2) Преобразовать получившееся уравнение:
(х² + 1/х²) + (-7х - 7/х) - 6 = 0
(х² + 1/х²) - 7 (х - 1/х) - 6 = 0
3) В первых скобках подготовить выделение полного квадрата:
(х² + 2 + 1/х² - 2) - 7(х - 1/х) - 6 = 0
4) В первых скобках выделить полный квадрат:
(х² + 2 + 1/х²) - 7(х - 1/х) - 6 - 2 = 0
(х + 1/х)² - 7(х + 1/х) - 8 = 0
5) Ввести новую переменную:
(х + 1/х) = у
у² - 7у - 8 = 0
6) Решить квадратное уравнение:
у² - 7у - 8 = 0
D=b²-4ac =49 + 32 = 81 √D=9
у₁=(-b-√D)/2a
у₁=(7-9)/2
у₁= -2/2
у₁= -1;
у₂=(-b+√D)/2a
у₂=(7+9)/2
у₂=16/2
у₂= 8;
7) Подставить значение у₁ и у₂ в выражение х + 1/х = у;
а) х + 1/х = -1
х² + 1 = -х
х² + х + 1 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 1 - 4 = -3
D < 0, нет решения.
б) х + 1/х = 8
х² + 1 = 8х
х² - 8х + 1 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 64 - 4 = 60 √D=√4*15 = 2√15
х₁=(-b-√D)/2a
х₁=(8-2√15)/2
х₁=4-2√15;
х₂=(-b+√D)/2a
х₂=(8+2√15)/2
х₂=4+√15.
Решения уравнения: х₁=4-2√15; х₂=4+√15.
Запишем формулу: P=m/n, где m – число исходов, благоприятствующих осуществлению события X, а n – число всех равновозможных элементарных исходов.
Для начала определим вероятность выпадения какого-либо числа при одном броске. Определённое число выпадает одно, а всего исходов может быть 6 (6 граней кубика). Значит, вероятность выпадения какого-либо числа = 1/6.
Так как бросков мы делаем 2, количество возможных результатов возводится во 2-ю степень, и вероятность выпадения какого-либо числа уже = 1 / 6 × 6 = 1/36. В последующем, мы будем домножать числитель на количество удовлетворяющих нас результатов.
Сумма выпавших очков делится на 5 при следующих результатах
1) 1 и 4 (=5)
2) 2 и 3 (=5)
3) 3 и 2 (=5)
4) 4 и 1 (=5)
5) 5 и 5 (=10)
Как видим, количество удовлетворяющих нас результатов = 5. Значит, вероятность выпадения числа, кратного 5 = 1 × 5 / 36 = 5/36 ≈ 0.139 = 13.9%
Сумма выпавших очков меньше, чем 8 при следующих результатах:
1) 1 и 1
2) 1 и 2
3) 1 и 3
4) 1 и 4
5) 1 и 5
6) 1 и 6
7) 2 и 1
8) 2 и 2
9) 2 и 3
10) 2 и 4
11) 2 и 5
12) 3 и 1
13) 3 и 2
14) 3 и 3
15) 3 и 4
16) 4 и 1
17) 4 и 2
18) 4 и 3
19) 5 и 1
20) 5 и 2
21) 6 и 1
Как видим, количество удовлетворяющих нас результатов = 21. Значит, вероятность выпадения чисел, сумма которых меньше 8 = 1 × 21 / 36 = 21/36 = 7/12 ≈ 0.583 = 58.3%
Произведение выпавших очков делится на 12 при следующих результатах:
1) 2 и 6
2) 3 и 4
3) 4 и 3
4) 6 и 2
Как видим, количество удовлетворяющих нас значений =4. Значит, вероятность выпадения чисел, произведение которых =12 составляет 1 × 4 / 36 = 4/36 = 1/9 ≈ 0,111 = 11,1%
Количество очков, выпавших в первый раз, и количество очков, выпавших
во второй раз, отличаются на 3 возможно при следующих результатах:
1) 1 и 4
2) 4 и 1
3) 2 и 5
4) 5 и 2
5) 3 и 6
6) 6 и 3
Как видим, количество удовлетворяющих нас результатов =6. Значит, вероятность выпадения чисел, количество очков которых, выпавших в первый раз, и количество очков, выпавших во второй раз, отличаются на 3 составляет 1 × 6 / 36 = 6/36 = 1/6 ≈ 0,166 = 16,6%
ответ: 1) 13.9%; 2) 58.3%; 3) 11,1%; 4) 16,6%.