Изобразите на координатной плоскости множество точек, заданное неравенством.
1) x^2+y^2< =9
2)x^2+y^2> =4
3)x^2+y^2< 8
4)(x-1)^2+y^2< =9
5)x^2+(y-1)^2> =10
6)(x+1)^2+(y-2)^2< =5
7)(x+2)^2+(y-1)^2> =8
8)(x+1)^2+(y-3)^2> 10
9)(2-x)^2+(y-2)^2< =16
решите примеры!
ставлю 30 !
Найдите координаты точек, в которых касательные к графику функции
y = (x + 1)/(x - 3), имеющие угловой коэффициент k = - 1, пересекают ось абсцисс.
Найдем координаты точек, в которых касательные к графику имеют угловой коэффициент угловой коэффициент k = - 1.
k = y` = [(x + 1)/(x - 3)]` = [x - 3 - (x + 1)] / (x - 3)² =
= - 4 /(x - 3)²
y` = - 1
- 4 / (x - 3)² = - 1
x² - 6x + 9 = 4
x² - 6x + 5 = 0
x₁ = 1
x₂ = 5
y₁ = - 1
y₂ = 3
Запишем уравнения этих касательных:
1) y = - (x - 1) - 1
2) y = - (x - 5) + 3
Касательные пересекают ось абсцисс, значит, y = 0
Таким образом, если у = 0, то
1) y = - (x - 1) - 1
- (x - 1) - 1 = 0
x = 0
2) y = - (x - 5) + 3
- (x - 5) + 3 = 0
x = 8
ответ: (0; 0) ; (8; 0)
2) y = √x y₀ = 2
y = y(x₀) + y`(x₀)*(x - x₀) - уравнение касательной
если у₀ = 2, то
2 = √x
x₀ = 4 абсцисса точки
а) y(x₀) = y(4) = √4 = 2
б) y` = 1/2√x
y` = 1/2√4 = 1/(2*2) = 1/4
в) y = 2 + (1/4)*(x - 4)
y = 2 + (1/4)*x - (1/4)*4
y = 2 + (1/4)*x - 1
y = (1/4)*x + 1 - уравнение касательной в точке
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел равна 9. Их четыре.
Следовательно, искомая вероятность Р(А)= 4/36 = 1/9
2) При бросании двух игральных кубиков могут выпасть следующие варианты:
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел меньше семи.
Их пятнадцать.
Следовательно, искомая вероятность Р(В)=15/36=5/12