Велосипедист проехал по грунтовой дороге 12 км с постоянной скоростью v1 км/ч, а затем проехал по шоссе 14 км с постоянной скоростью v2 км/ч, потратив на весь путь часов.
Выразите через 1 и 2, записав результат в виде дроби.
Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0
Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим:
Нам надо доказать ≥.
Значит, будем смотреть разность и она должна быть ≥ 0
а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) =
=(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒
Доказать неравенство: а⁴+b⁴ ≥ a³b+ab³
Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0
Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим:
Нам надо доказать ≥.
Значит, будем смотреть разность и она должна быть ≥ 0
а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) =
=(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒
⇒ а⁴+b⁴ ≥ a³b+ab³
1) 3a - 27/4a-36
в числителе выноси общий множитель 3 а в знаменателе 4
и будет 3(а - 9)/4(а - 9) и то что в скобках сокращаем (потому что оно одинаковое) = 3/4
2) 11(d+6)^8 / 88(d+6) = (d+ 6)^8/8
4) Приведи дроби x^2 / x^2−u2 и x−u / 7x+7u к общему знаменателю.
5. 7x^2 / 7(x+u)(x−u) и x^2−2xu+u^2 / 7(x+u)(x−u) (правильный)
5) 3x / x−11 и 8y / x+11
4. 3x^2+33x / x^2−121 и 8yx−88y / x^2−121 (правильный)
Сократите дробь 5m+an−5n−am / a^2−10a+25 до знаменателя 5−a
5m+an−5n−am / a^2−10a+25 = (5 - а)(m - n)/(5 - a)^2 = m - n/ 5 - a