В ящике 10 белых, 10 черных, 10 красных шаров. Эксперимент состоит в том, что наудачу вытаскивают три шара и проверяют, одного ли они цвета. В таблице показано, сколько было благоприятных исходов в зависимости от числа проведенных экспериментов.
Число экспериментов
100
200
300
Число благоприятных исходов
9
17
28
а) Найдите частоты появления благоприятных исходов (с точностью до сотых) в зависимости от числа экспериментов.
б) Используя полученные данные, представьте графически зависимость частоты благоприятного исхода от числа экспериментов.
в) Определите, какова примерно вероятность благоприятного исхода при одном испытании.
В.3
1) (7+x)²=49+14x+x²
2) (8-x)²=64-16x+x²
3) 25b²+10bc+c²=(5b+c)²
4) 4z²-20z+25=(2z+5)²
5) 49x²-0.25=(7x-0.5)(7x+0.5)
6) (7x-3)(7x+3)=49x²-9
7) 8x³+64=(2x+4)(4x²-8x+16)
8) 27x³-125=(3x-5)(9x²+15x+25)
9) (x+3)³=x³+9x²+27x+27
10) (4-b)³=64-48b²+12b²-b³
B.4
1) (2y+3)²=4y²+12y+9
2) (3a-1)²=9a²-6a+1
3) 16a²+24ab+9b²=(4a+3b)²
4) 36a²-24ab+4b²=(6a+2b)²
5) 81a⁶-25b⁸=(9a³-5b⁴)(9a³+5b⁴)
6) (4b+5a)(5a-4b)=25a²+16b²
7) 27m³+8n³=(3m+2n)(9m²-6mn+4n²)
8) 64m³-p³=(4m-p)(16m²+4mp+p²)
9) (2a+1)³=8a³+12a²+6a+1
10) (2x-3)³=8x³-36x²+54x-27
В.5
1) (5x+4y)²=25x²+40xy+16y²
2) (8a-5b)²=64a²-80ab+25b²
3) 9x²+42xy+49y²=(3x+7y)²
4) 64x²-48xy+9y²=(8x+3y)²
5) 121x²-0.16y⁴=(11x-0.4y²)(11x+0.4y²)
6) (2n-3m)(3m+2n)=4n²-9m²
7) 125x³+216y³=(5x+6y)(25x²-30xy+32y²)
8) 27a³-64b³=(3a-4b)(9a²+12ab+16b²)
9) (4x+2y)³=64x³+96x²y+48xy²+8y³
10) (5a-3b)³=125a³-225a²b+135ab²-27b³
Объяснение:
У нас есть V (скорость), t (время) и S (расстояние)
Лодка двигалась ПО течению реки. Ее собственная скорость остаётся неизвестна. Соответственно:
1) х км/ч + 4км/ч = это общая скорость с которой двигалась лодка.
Далее у нас даётся время за которое лодка расстояние.
2) Время: за 6 часов.
3) Расстояние: 102 километра.
Мы записываем таблицу
V T S
x+4. 6. 102
И тут мы видим что нам дано все из данных. Это уравнение:
(х+4) × 6 = 102
6х+24=102
6х=78 |: 6
х=13 км/ч скорость лодки.
Проверяем: (13+4)×6=102