Геометрическая прогрессия — последовательность чисел b1, b2, b3,.. (членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0 , q≠0.b1, b2=b1q, b3=b2q, ..., bn=bn-1q..., где
q знаменатель геометрической
прогрессии (шаг),
b1, b2, b3, ..., bn,.. - члены
геометрической прогрессии
3. n-й член геометрической прогрессии bn
определяется по формуле: bn=b1qn-1
4. Если
|q| < 1, — то прогрессия - бесконечная.
5. если последовательность является
бесконечно убывающей, то ее сумма
определяется по формуле: S∞ = b1 / (1-q)
в данном случае, b1=28, q=b2/b1=-14/28=-1/2,
|q|=|-1/2|=1/2<1—› значит, эта прогрессия бесконечная и S∞=b1/(1-q)=28/(1-(-1/2))=
18 2/3
Объяснение:
Вспомним:
Геометрическая прогрессия — последовательность чисел b1, b2, b3,.. (членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0 , q≠0.b1, b2=b1q, b3=b2q, ..., bn=bn-1q..., гдеq знаменатель геометрической
прогрессии (шаг),
b1, b2, b3, ..., bn,.. - члены
геометрической прогрессии
3. n-й член геометрической прогрессии bn
определяется по формуле: bn=b1qn-1
4. Если
|q| < 1, — то прогрессия - бесконечная.5. если последовательность является
бесконечно убывающей, то ее сумма
определяется по формуле: S∞ = b1 / (1-q)
в данном случае, b1=28, q=b2/b1=-14/28=-1/2,
|q|=|-1/2|=1/2<1—› значит, эта прогрессия бесконечная и S∞=b1/(1-q)=28/(1-(-1/2))=
=28/(1+1/2)=28/(3/2)=28*2/3=56/3=18 2/3
Примем вершину пирамиды в начале координат.
Тогда тогда боковые рёбра равны x, y, z.
Выразим площади боковых граней:
xz = 8,
yz = 16,
xy = 18.
Решим эту систему: z = 8/x. y*(8/x) = 16, отсюда у = 2х. Подставим в 3 уравнение: х * 2х = 18, 2х² = 18 или х = +-√9 = +-3.
Отрицательное значение не принимаем, примем х = 3, тогда у =2*3 = 6, z = 8/3.
Найдём стороны основания по Пифагору.
a = √(3² + 6²) = √(9 +36) = √45 = 3√5.
b = √(3² + (8/3)²) = √(6 +(64/9)) = √(100/9) = 10/3.
c =√(6² + (8/3)²) = √(36 +(64/9)) = √(388/9) = √388/3 ≈ 6,566.
Найдём площадь одной из граней.
So = (1/2)xy = (1/2)*3*6 = 9/
ответ: V = (1/3)SoH = (1/3)*9*(8/3) = 8 куб.ед.
.