В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Monimix
Monimix
12.06.2022 08:36 •  Алгебра

в трёхзначном числе а-цифра сотен, б-цифра десятков, с-цифра единиц, запишите все трехзначные числа для которых истинно высказывание"авс=6"

Показать ответ
Ответ:
MashaYamg
MashaYamg
17.01.2021 06:17
19 ч 20 мин = 19 1/3 ч
19 1/3 - 9 = 10 1/3 (ч) - время в пути.
10 1/3 ч = 31/3 ч
Пусть х км/ч - собственная скорость баржи,
тогда (х + 3) км/ч  скорость баржи по течению реки,
(х - 3) км/ч - скорость баржи против течения реки.

60 : (х + 3) + 60 : (х - 3) + 2 = 31/3
60 * 3 * (х - 3) + 60 * 3 * (х + 3) + 2 * 3 * (х + 3)(х - 3) = 31 * (х + 3)(х - 3)
180х - 540 + 180х + 540  + 6х² - 18х + 18х - 54 = 31х² - 93х + 93х - 279
360х + 6х² - 54 = 31х² - 279
31х² - 6х² - 360х - 279 + 54 = 0
25х² - 360х - 225 = 0        I  : 0
5х² - 72х - 45 = 0
D = - 72² - 4 * 5 * (- 45) = 5184 + 900 = 6084 = 78²

x_{1} =\frac{72+78}{2*5} =15 \\ \\ x_{2} = \frac{72-78}{2*5} =-0,6 \\ \\
Второй корень не подходит, значит, собственная скорость баржи 15 км/ч.
15 - 3 = 12 (км/ч) - скорость баржи вверх по реке.
60 : 12 = 5 (ч) - шла баржа от пункта А до пункта В.
9 + 5 = 14 (ч) - время, в которое баржа прибыла в пункт В.
ответ: в пункт В баржа прибыла в 14 часов.
0,0(0 оценок)
Ответ:
wigler
wigler
16.01.2020 05:57

Объяснение:

При n=1 верность неравенства очевидна.

При n=2, получаем известное верное неравенство, оно нам понадобится.

\frac{a+b}{2} \geq \sqrt{ab}

Теперь докажем, что из верности неравенство верно для n=m, следует его верность для n=2m.

В самом деле, пусть неравенство верно для n=m. Нам нужно доказать, что тогда верно и неравенство

\frac{a_1+a_2+...+a_m+a_{m+1}+...+a_{2m}}{2m} \geq \sqrt[2m]{a_1a_2...a_{2m}}

Так как неравенство верно для n=m (по индуктивному предположению), можем записать такие два неравенства:

\frac{a_1+a_2+...+a_m}{m} \geq \sqrt[m]{a_1a_2...a_{m}} \\\frac{a_{m+1}+a_{m+2}+...+a_{2m}}{m} \geq \sqrt[m]{a_{m+1}...a_{2m}} \\

Теперь сложим эти неравенства и разделим обе части полученного на 2. Получится вот такое неравенство:

\frac{a_1+a_2+...+a_{2m}}{2m} \geq \frac{\sqrt[m]{a_1a_2...a_{m}}+\sqrt[m]{a_{m+1}...a_{2m}}}{2}

Но использовав неравенство для n=2 получаем:

\frac{\sqrt[m]{a_1a_2...a_{m}}+\sqrt[m]{a_{m+1}...a_{2m}}}{2} \geq \sqrt{\sqrt[m]{a_1a_2...a_{m}}\sqrt[m]{a_{m+1}...a_{2m}}} =\sqrt[2m]{a_1a_2...a_{2m}}

Тогда и подавно

\frac{a_1+a_2+...+a_{2m}}{2m} \geq \sqrt[2m]{a_1a_2...a_{2m}}

А теперь, следуя за Коши (который как раз первым доказал это неравенство), заметим, что из доказанного выше следует, что если неравенство верно для n=2^k (где k - натуральное), то оно верно и для n=2^{k+1}. Действительно, чтобы доказать это, достаточно положить m=2^k, тогда 2m=2^{k+1} и неравенство также верно. А так как неравенство верно для n=2, то по индукции отсюда получаем верность неравенства для всех остальных степеней двойки, то есть для чисел вида n=2^a при любом натуральном a. Это утверждение назовём Леммой 1.

Осталось доказать, что из верности неравенства для n=k, следует его верность для n=k-1. Это будет наша Лемма 2.

Ну что же, раз в задании дана такая превосходная подсказка - воспользуемся ей. Найдём такой x, о котором идёт речь в задании. Он выражается из данной в условии формулы очевидным образом, не буду на этом останавливаться:

x=\frac{a_1+a_2+...+a_{n-1}}{n-1}

Теперь пусть неравенство верно для произвольного n=k.

Применим это неравенство к числам a_1, a_2, ... , a_{k-1}, \frac{a_1+a_2+...a_{k-1}}{k-1}:

\frac{a_1+...+a_{k-1}+\frac{a_1+...+a_{k-1}}{k-1} }{k} \geq \sqrt[k]{a_1...a_{k-1}\frac{a_1+...+a_{k-1}}{k-1}}

Что получится в левой части мы знаем - среднее арифметическое чисел a_1, ... , a_{k-1}. Далее возводим неравенство в степень k и преобразовываем:

\bigg(\frac{a_1+...+a_{k-1}}{k-1} \bigg)^k\geq a_1...a_{k-1}\frac{a_1+...+a_{k-1}}{k-1}\\\bigg(\frac{a_1+...+a_{k-1}}{k-1} \bigg)^{k-1}\geq a_1...a_{k-1}\\\frac{a_1+...+a_{k-1}}{k-1}\geq \sqrt[k-1]{a_1...a_{k-1}}

Получили как раз неравенство для n=k-1.

Собственно, неравенство можно считать доказанным. Лемма 1 и Лемма 2 решают вопрос для любого n. В самом деле, возьмём произвольное натуральное n. Очевидно, найдётся такое натуральное a, что 2^an. Неравенство верно для этой степени двойки (Лемма 1). Но оно верно также и для всех натуральных чисел меньших её, это по индукции следует из Леммы 2. Тогда неравенство верно и для нашего произвольно выбранного n.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота