Реши задачу. На первой стоянке автомобилей в 2,5 раза больше, чем на второй. После того, как 15 автомобилей переехали с первой стоянки на вторую, на второй стоянке автомобилей стало на 3 больше, чем на первой. Сколько автомобилей было первоначально?
Попроси больше объяснений
Следить
Отметить нарушение
542210754374 23.05.2011
ответы и объяснения
Проверенный ответ

triolana
светило науки
пусть изначально на второй стоянке было х авто,а на первой 2,5хЗатем стало на второй х+15 авто,а на первой 2,5х-15
Область определения (обозначается D(y)) функции находится следующим образом. Необходимо проанализировать функцию на наличие корней, знаменателей и логарифмов. Последний случай нас мало интересует, потому сразу перейдем к двум первым.
А именно: в знаменателе не должен быть ноль, а число под корнем не должно быть отрицательным.
На самом деле, первую строчку можно опустить, далее поймете почему).
Решая вторую строчку получаем:
Из этого следует, что x1≠-4, x2=-4, x3=1 (2 и 3 корни получились путем решения квадратного уравнения в числителе).
Далее методом интервалов находим промежутки, удовлетворяющие условию ≥0. Таким промежутком является [1;∞).
1
5 - 9 классы
Алгебра
Реши задачу. На первой стоянке автомобилей в 2,5 раза больше, чем на второй. После того, как 15 автомобилей переехали с первой стоянки на вторую, на второй стоянке автомобилей стало на 3 больше, чем на первой. Сколько автомобилей было первоначально?
Попроси больше объяснений
Следить
Отметить нарушение
542210754374 23.05.2011
ответы и объяснения
Проверенный ответ

triolana
светило науки
пусть изначально на второй стоянке было х авто,а на первой 2,5хЗатем стало на второй х+15 авто,а на первой 2,5х-15
Составим уравнение
2,5х-15=х+15-3
2,5х-х=15+15-3
1,5х=27
х=27:1,5
х=18 авто было на второй стоянке изначально
18*2,5=45 авто было на первой изначально
Область определения (обозначается D(y)) функции находится следующим образом. Необходимо проанализировать функцию на наличие корней, знаменателей и логарифмов. Последний случай нас мало интересует, потому сразу перейдем к двум первым.
А именно: в знаменателе не должен быть ноль, а число под корнем не должно быть отрицательным.
На самом деле, первую строчку можно опустить, далее поймете почему).
Решая вторую строчку получаем:
Из этого следует, что x1≠-4, x2=-4, x3=1 (2 и 3 корни получились путем решения квадратного уравнения в числителе).
Далее методом интервалов находим промежутки, удовлетворяющие условию ≥0. Таким промежутком является [1;∞).
ответ: D(y)=[1;∞)