Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
2ху - 3х + 5у = 11
xy - 2x = 6 - 3y
x (y - 2) = 6 - 3y
x = (6-3y)/(y-2)
2y (6-3y)/(y-2) - 3 (6-3y)/(y-2) + 5y = 11
(12y - 6y2) / (y - 2) - ( 18 - 9y )/ (y-2) + 5y = 11
12y - 6y2 - 18 + 9y + 5y (y-2) = 11 (y-2)
12y - 6y2 - 18 + 9y + 5y2 - 10y = 11y - 22
12y + 9y - 10y - 11y - 6y2 + 5y2 - 18 + 22 = 0
12y + 9y - 10y - 11y - 6y2 + 5y2 - 18 + 22 = 0
0y - y2 + 4 = 0
y2 = 4
ищем Х:
x = (6-3y)/(y-2)
x1 = (6 - 3 * 2) / (2 - 2) - на ноль делить нельзя
x2 = (6 - 3 * -2) / (-2 - 2) = 6 +6 / -4 = 12 / -4 = -3
ответ только 1:
y = -2
х = -3
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1