Укажите соответствующий вывод для каждого неравенства.
Обоснуйте свой ответ
a) x^2 - 4x + 1 <_ 0
b) 2x^2 - x + 4 > 0
c) -x^2 + 3x - 8 >_ 0
d) -x^2 + 16 >_ 0
1. Неравенство не имеет решений.
2.Решением неравенства является вся числовая прямая.
3. Решением неравенства является одна точка.
4. Решением неравенства является закрытый промежуток.
5. Решением неравенства является открытый промежуток.
6. Решением неравенства является объединение двух промежутков.
по данному условию можем создать систему
x-y=16 x=16+y
xy=132 (16+y)y=132
16y+y^2=132
y^2+16y-132=0
D=16^2-4*1*(-132)=256+528=784=28^2
y1=(-16+28)/(2*1)=12/2=6
y2=(-16-28)/(2*1)=-44/2=-22
x1=16+y1 x2=16+y2
x1=16+6=22 x2=16+(-22)=16-22=-6
ответ: (22;6), (-6;-22)
2x – 3 = 0
2х = 3
х = 3 / 2
х = 1,5.
Получена первая точка – (1,5; 0).
Точка пересечения с осью Оу находится методом подстановки вместо значения переменной х значения ноль:
у (0) = 2 * 0 – 3 = –3
Вторая точка – (0; –3).
Получены две точки, через которые проводится прямая.
Второй заключается в методе подстановки вместо переменной х любых двух значений и вычисления для них значений функции. Например, подставим вместо переменной х два значения – число 2 и число 4. Получим:
При х = 2 функция будет иметь значение:
у = 2 * 2 – 3 = 1 – первая точка (2; 1).
При х = 4 функция будет иметь значение:
у = 2 * 4 – 3 = 5 – вторая точка (4; 5).
И в первом, и во втором случае получим одинаковые прямые.
может это правильно?