X - стоимость шапки, y- стоимость шарфа. После снижения цен на каждую вещь в отдельности,общая цена снизилась на 195 рублей.Следовательно, 20% от шапки и 10% от шарфа стоят 195 рублей. Составим уравнение : 0,2x+0,1y=195 и выразим из него x. x = (1950-y)/2. Вещи стоила 1200,значит уравнение имеет вид : x+y=1200. Подставим x. (1950-y)/2+y=1200. Заносим левую часть под общий знаменатель и получаем (1950+y)/2=1200. По свойству пропорции : 1950+y=2400. Откуда y=550. Найдём x. x+550=1200, x=650. ответ: шапка - 650 рублей, шарф - 550 рублей.
A1) Тангенс угла наклона касательной к графику функции f(x)=5x^2+3x-1 в точке с абсциссой x0=0,2 равен производной функции в заданной точке. f(x) = 5x²+3x-1, f'(x) = 10x+3, f'(xo)= 10*0.2+3 = 2+3 = 5.
A2) Угловой коэффициент касательной ,проведенной к графику функции f(x)=x^5-5x^5-3 в точке с абсциссой x0=-1. Тут в задании что то со степенями напутано.
A3) Уравнение касательной к графику функции f(x)=x-3x^2 в точке с абсциссой x0=2.
Уравнение касательной y = f ’(x0) · (x − x0) + f (x0)
Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.
Значение функции в точке х = 2:
f(2) = 2-3*2² = 2-12 = -10.
Производная функции равна f'(x) = 1-6x.
В точке Хо = 2 её значение f'(2) = 1-6*2 = -11.
Уравнение касательной: у = -11(х-2)-10 или, раскрыв скобки,
у = -11х+22-10 = -11х+12.
B2) Даны уравнения функции y=0,5x^4-x и касательной к её графику
y=-(3/4)x-(3/32). Производная функции равна f'(x) = 2х³-1. Так как производная равна коэффициенту перед х в уравнении касательной, то 2х³-1 = -3/4. 8х³-4 = -3, 8х³ = 1, х = ∛(1/8) = 1/2 это абсцисса точки касания..
После снижения цен на каждую вещь в отдельности,общая цена снизилась на 195 рублей.Следовательно, 20% от шапки и 10% от шарфа стоят 195 рублей.
Составим уравнение : 0,2x+0,1y=195 и выразим из него x.
x = (1950-y)/2.
Вещи стоила 1200,значит уравнение имеет вид : x+y=1200. Подставим x.
(1950-y)/2+y=1200. Заносим левую часть под общий знаменатель и получаем
(1950+y)/2=1200.
По свойству пропорции : 1950+y=2400. Откуда y=550.
Найдём x.
x+550=1200,
x=650.
ответ: шапка - 650 рублей, шарф - 550 рублей.
f(x) = 5x²+3x-1,
f'(x) = 10x+3,
f'(xo)= 10*0.2+3 = 2+3 = 5.
A2) Угловой коэффициент касательной ,проведенной к графику функции f(x)=x^5-5x^5-3 в точке с абсциссой x0=-1.
Тут в задании что то со степенями напутано.
A3) Уравнение касательной к графику функции f(x)=x-3x^2 в точке с абсциссой x0=2.
Уравнение касательной y = f ’(x0) · (x − x0) + f (x0)
Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.
Значение функции в точке х = 2:
f(2) = 2-3*2² = 2-12 = -10.
Производная функции равна f'(x) = 1-6x.
В точке Хо = 2 её значение f'(2) = 1-6*2 = -11.
Уравнение касательной: у = -11(х-2)-10 или, раскрыв скобки,
у = -11х+22-10 = -11х+12.
B2) Даны уравнения функции y=0,5x^4-x и касательной к её графику
y=-(3/4)x-(3/32).Производная функции равна f'(x) = 2х³-1.
Так как производная равна коэффициенту перед х в уравнении касательной, то 2х³-1 = -3/4.
8х³-4 = -3,
8х³ = 1,
х = ∛(1/8) = 1/2 это абсцисса точки касания..