Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
1) (x+5)^2 *(x+3)(x-3) < 0; x =- 5; x = - 3; x = 3. х = 5 - корень четной(второй) степени, при переходе через него знак неравенства не меняется, На прямой отметим эти 3 точки, причем все точки выколем, т.к неравенство строгое. x+5≠ 0;⇒ x ≠ -5 + + - + (-5)(-3)(3)x ответ х∈(- 3; 3).
2) (x^2 - 4)(x-1)^2 > 0; (x-2)(x+2)(x - 1)^2 >0; x = -2; x = 2; x = 1. x-1≠0; x ≠ 1. + - - + (-2)(-1)(2)x ответ х∈(- беск-сть; -2) ∨ (2; + беск-сть)
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
x =- 5; x = - 3; x = 3.
х = 5 - корень четной(второй) степени, при переходе через него знак неравенства не меняется, На прямой отметим эти 3 точки, причем все точки выколем, т.к неравенство строгое.
x+5≠ 0;⇒ x ≠ -5
+ + - +
(-5)(-3)(3)x
ответ х∈(- 3; 3).
2) (x^2 - 4)(x-1)^2 > 0;
(x-2)(x+2)(x - 1)^2 >0;
x = -2; x = 2; x = 1.
x-1≠0; x ≠ 1.
+ - - +
(-2)(-1)(2)x
ответ х∈(- беск-сть; -2) ∨ (2; + беск-сть)