У Михайла в двох кишенях лежать цукерки. В одній кишені 11 цукерок «Пілот», у другій кишені 3 цукерки «Садко». Михайло виймає одну випадкову цукерку з якоїсь кишені. З'ясуй, скільки існу в це зробити?
Первые дорожные указатели появились с возникновением первых дорог. Что бы не заблудиться в пути, древние путешественники надламывали сучья, делали метки на коре, размещали камни разного размера. Когда возникла письменность, на камнях стали писать названия населённых пунктов, в которые вели дороги. Первая система дорожных указателей возникла в Древнем Риме в III в. до н.э. Когда по дорогам стали ездить конные экипажи, была проведена организация дорожного движения. Возникновение первых автомобилей на рубеже XIX-XX веков, потребовало установления предупреждающих дорожных знаков для обеспечения безопасность езды на дороге.
Первые дорожные указатели появились с возникновением первых дорог. Что бы не заблудиться в пути, древние путешественники надламывали сучья, делали метки на коре, размещали камни разного размера. Когда возникла письменность, на камнях стали писать названия населённых пунктов, в которые вели дороги. Первая система дорожных указателей возникла в Древнем Риме в III в. до н.э. Когда по дорогам стали ездить конные экипажи, была проведена организация дорожного движения. Возникновение первых автомобилей на рубеже XIX-XX веков, потребовало установления предупреждающих дорожных знаков для обеспечения безопасность езды на дороге.
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная