1) Простейший конденсатор-это плоский конденсатор. Плоский конденсатор состоит из двух параллельных плоских проводников-пластинок, которые называются обкладками конденсатора. Поэтому если мы увеличиваем диэлектрическую проницаемость (диэлектрик) в определенное количество раз, то, следовательно, емкость плоского конденсатора увеличится в тоже количество раз⇒что плоский конденсатор увеличится в 2,1 раз
При умножении: При умножении нескольких чисел ( двух и более ) произведение имеет знак « + » , если число отрицательных сомножителей чётно, и знак « – » , если их число нечётно. + · + = + + · – = – – · + = – – · – = + Деление. При делении двух чисел абсолютная величина делимого делится на абсолютную величину делителя, а частное принимает знак « + » , если знаки делимого и делителя одинаковы, и знак « – » , если знаки делимого и делителя разные.
Здесь действуют те же правила знаков, что и при умножении: + : + = + + : – = – – : + = – – : – = +
Вычитание. Можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.
1) Простейший конденсатор-это плоский конденсатор. Плоский конденсатор состоит из двух параллельных плоских проводников-пластинок, которые называются обкладками конденсатора. Поэтому если мы увеличиваем диэлектрическую проницаемость (диэлектрик) в определенное количество раз, то, следовательно, емкость плоского конденсатора увеличится в тоже количество раз⇒что плоский конденсатор увеличится в 2,1 раз
2) Дано: Формула: Решение:
U=24В С=q/U С=3*10∧-5Кл/24В=
q=30мкКл= =0,125*10∧-5Ф=1,25мкФ
=3*10∧-5Кл
ответ: С=1,25мкФ
C-?мкФ
3) Дано: Формула: Решение:
С=40нФ= С=q/U⇒ q=4*10∧-8Ф*30В=
=4*10∧-8Ф q=CU =120*10∧-8Кл=1,2мкКл
U=30В
ответ: q=1,2мкКл
q-?мкКл
При умножении нескольких чисел ( двух и более ) произведение имеет знак « + » , если число отрицательных сомножителей чётно, и знак « – » , если их число нечётно.
+ · + = +
+ · – = –
– · + = –
– · – = +
Деление.
При делении двух чисел абсолютная величина делимого делится на абсолютную величину делителя, а частное принимает знак « + » , если знаки делимого и делителя одинаковы, и знак « – » , если знаки делимого и делителя разные.
Здесь действуют те же правила знаков, что и при умножении:
+ : + = +
+ : – = –
– : + = –
– : – = +
Вычитание. Можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.