Самое маленькое трехзначное число - это 100. Если полагать, что меньшее из искомых чисел равно 100, то большее = 100*5 = 500 а сумма 500 + 100 = 600. По условию сумма 498, но это меньше, чем 600, чего не может быть. Значит среди трехзначных чисел задача не имеет решений. Пусть х - одно из чисел, тогда 498 - х - второе число, рассотрим два случая: 1. Если х - большее из чисел и тогда имеем уравнение х/(498 - х) = 5; 2. Если х - меньшее число, тогда (498 - х) /х = 5. Решая первое уравнение, получаем х = 2490 - 5х 6х = 2490 х = 415 498 - х = 83. Из второго уравнения находим 498 - х = 5х 6х = 498 х = 83 498 - х = 415. Оба случая привели к одному ответу. ответ: 83 и 415.
Решение: Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет: х/16*100% При добавлении олова, масса сплава стала равной: 16+2=18(кг) а содержание олова в новом сплаве составило: (х+2) кг процентное содержание олова в новом сплаве равно: (х+2)/18*100% А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение: (х+2)/18*100% - х/16*100%=5% 100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144 8*100*(х+2) - 9*100*х=144*5 800х+1600 -900х=720 -100х=720-1600 -100х=-880 х=-880 : -100 х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг
Если полагать, что меньшее из искомых чисел равно 100,
то большее = 100*5 = 500
а сумма 500 + 100 = 600.
По условию сумма 498, но это меньше, чем 600, чего не может быть.
Значит среди трехзначных чисел задача не имеет решений.
Пусть х - одно из чисел,
тогда 498 - х - второе число,
рассотрим два случая:
1. Если х - большее из чисел и тогда имеем уравнение
х/(498 - х) = 5;
2. Если х - меньшее число, тогда
(498 - х) /х = 5.
Решая первое уравнение, получаем
х = 2490 - 5х
6х = 2490
х = 415
498 - х = 83.
Из второго уравнения находим
498 - х = 5х
6х = 498
х = 83
498 - х = 415.
Оба случая привели к одному ответу.
ответ: 83 и 415.
Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет:
х/16*100%
При добавлении олова, масса сплава стала равной:
16+2=18(кг)
а содержание олова в новом сплаве составило:
(х+2) кг
процентное содержание олова в новом сплаве равно:
(х+2)/18*100%
А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение:
(х+2)/18*100% - х/16*100%=5%
100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144
8*100*(х+2) - 9*100*х=144*5
800х+1600 -900х=720
-100х=720-1600
-100х=-880
х=-880 : -100
х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг